Re-splitting δf method for electro-magnetic gyrokinetic particle-in-cell (PIC) simulation of tokamak plasmas

Abstract A new method based on a re-splitting δ f technique is proposed to mitigate the cancellation problem in electro-magnetic gyrokinetic PIC simulation. This new scheme, together with the pull-back mitigation (PBM) scheme (Mishchenko et al., 2014), have recently been implemented in the GEM code (Chen et al., 2003). These two algorithms are systematically compared with the original GEM algorithm for the simulation of the ion temperature gradient (ITG) mode, the kinetic ballooning mode (KBM), the toroidal Alfven eigenmode (TAE) and the energetic particle mode (EPM). The three algorithms agree well for all of these modes. Moreover, both the re-splitting method and PBM can mitigate the cancellation problem and improve the computational efficiency.

[1]  G. Fu,et al.  Zonal structure effect on the nonlinear saturation of reverse shear Alfven eigenmodes , 2018 .

[2]  Mike Kotschenreuther,et al.  Comparison of initial value and eigenvalue codes for kinetic toroidal plasma instabilities , 1995 .

[3]  Yang Chen,et al.  Gyrokinetic-ion drift-kinetic-electron simulation of the (m = 2, n = 1) cylindrical tearing mode , 2016 .

[4]  Laurent Villard,et al.  Finite element approach to global gyrokinetic Particle-In-Cell simulations using magnetic coordinates , 1998 .

[5]  E. Sonnendrücker,et al.  Reduction of the statistical error in electromagnetic gyrokinetic particle-in-cell simulations , 2019, Journal of Plasma Physics.

[6]  Laurent Villard,et al.  Gyrokinetic simulations of turbulent transport , 2010 .

[7]  W. Lee,et al.  Gyrokinetic Particle Simulation Model , 1987 .

[8]  Verification of gyrokinetic δf simulations of electron temperature gradient turbulence , 2007 .

[9]  Yang Chen,et al.  Electromagnetic gyrokinetic δf particle-in-cell turbulence simulation with realistic equilibrium profiles and geometry , 2007, J. Comput. Phys..

[10]  J. Brotánková,et al.  Modification of plasma flows with gas puff in the scrape-off layer of ADITYA tokamak , 2013 .

[11]  The effect of ion orbit loss and X-loss on the interpretation of ion energy and particle transport in the DIII-D edge plasma , 2011 .

[12]  Alain J. Brizard,et al.  Nonlinear gyrokinetic theory for finite‐beta plasmas , 1988 .

[13]  Alain J. Brizard,et al.  Foundations of Nonlinear Gyrokinetic Theory , 2007 .

[14]  Scott E. Parker,et al.  A δ f particle method for gyrokinetic simulations with kinetic electrons and electromagnetic perturbations , 2003 .

[15]  Laurent Villard,et al.  Pullback scheme implementation in ORB5 , 2018, Comput. Phys. Commun..

[16]  T. Görler,et al.  Intercode comparison of gyrokinetic global electromagnetic modes , 2016 .

[17]  Roman Hatzky,et al.  Electromagnetic gyrokinetic PIC simulation with an adjustable control variates method , 2007, J. Comput. Phys..

[18]  Eric Sonnendrücker,et al.  An explicit large time step particle-in-cell scheme for nonlinear gyrokinetic simulations in the electromagnetic regime , 2016 .