Raman Spectroscopy and Related Techniques in Biomedicine

In this review we describe label-free optical spectroscopy techniques which are able to non-invasively measure the (bio)chemistry in biological systems. Raman spectroscopy uses visible or near-infrared light to measure a spectrum of vibrational bonds in seconds. Coherent anti-Stokes Raman (CARS) microscopy and stimulated Raman loss (SRL) microscopy are orders of magnitude more efficient than Raman spectroscopy, and are able to acquire high quality chemically-specific images in seconds. We discuss the benefits and limitations of all techniques, with particular emphasis on applications in biomedicine—both in vivo (using fiber endoscopes) and in vitro (in optical microscopes).

[1]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[2]  Katsumasa Fujita,et al.  Label-free molecular imaging of living cells. , 2008, Molecules and cells.

[3]  Neil A. Anderson,et al.  Nanoscale optical imaging of single-walled carbon nanotubes , 2006 .

[4]  Wieland Hill,et al.  Laser Power Effects in SERS Spectroscopy at Thin Metal Films , 2001 .

[5]  Alistair Elfick,et al.  Optical Spectroscopy for Noninvasive Monitoring of Stem Cell Differentiation , 2010, Journal of biomedicine & biotechnology.

[6]  Xilin Xiao,et al.  In situ evaluation of breast cancer cell growth with 3D ATR-FTIR spectroscopy , 2009 .

[7]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[8]  Abigail S Haka,et al.  In vivo Raman spectral pathology of human atherosclerosis and vulnerable plaque. , 2006, Journal of biomedical optics.

[9]  H. Hamaguchi,et al.  In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber. , 2006, Optics express.

[10]  Ji-Xin Cheng,et al.  High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy. , 2009, The journal of physical chemistry. B.

[11]  Matthew D. Keller,et al.  Raman Spectroscopy for Cancer Diagnosis , 2006 .

[12]  Ioan Notingher,et al.  Raman Spectroscopy Cell-based Biosensors , 2007, Sensors (Basel, Switzerland).

[13]  Sanjiv S. Gambhir,et al.  Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy , 2009, Proceedings of the National Academy of Sciences.

[14]  Andreas Volkmer,et al.  Multiplex Coherent Anti-Stokes Raman Scattering Microspectroscopy and Study of Lipid Vesicles , 2002 .

[15]  Landulfo Silveira,et al.  Classification System of Raman Spectra using Cluster Analysis to Diagnose Coronary Artery Lesions , 2009 .

[16]  Alistair P D Elfick,et al.  Development of tip-enhanced optical spectroscopy for biological applications: a review , 2010, Analytical and bioanalytical chemistry.

[17]  May D. Wang,et al.  In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags , 2008, Nature Biotechnology.

[18]  Satoshi Kawata,et al.  Raman microscopy for dynamic molecular imaging of living cells. , 2008, Journal of biomedical optics.

[19]  Jennifer P Ogilvie,et al.  Comparing coherent and spontaneous Raman scattering under biological imaging conditions. , 2009, Optics letters.

[20]  F.H.M. Jongsma,et al.  Raman Spectroscopy in Ophthalmology: From Experimental Tool to Applications In Vivo , 2001, Lasers in Medical Science.

[21]  T. T. Le,et al.  Label-free Imaging of Arterial Cells and Extracellular Matrix Using a Multimodal CARS Microscope. , 2008, Optics communications.

[22]  J. Greve,et al.  Laser irradiation and Raman spectroscopy of single living cells and chromosomes: sample degradation occurs with 514.5 nm but not with 660 nm laser light. , 1991, Experimental cell research.

[23]  Alistair Elfick,et al.  Nonlinear optical microscopy for drug delivery monitoring and cancer tissue imaging , 2010 .

[24]  Katsumasa Fujita,et al.  Tissue imaging of myocardial infarct regions by a slit-scanning Raman microscope , 2009, BiOS.

[25]  G R Holtom,et al.  Achieving Molecular Selectivity in Imaging Using Multiphoton Raman Spectroscopy Techniques , 2001, Traffic.

[26]  Chit Yaw Fu,et al.  Fluctuation in surface enhanced Raman scattering intensity due to plasmon related heating effect , 2009, NanoScience + Engineering.

[27]  G. Puppels,et al.  Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin. , 2003, Biophysical journal.

[28]  Ji-Xin Cheng,et al.  Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy. , 2007, Journal of biomedical optics.

[29]  X. Xie,et al.  Adaptive optics for enhanced signal in CARS microscopy. , 2007, Optics express.

[30]  D. Lieu,et al.  Label‐free biochemical characterization of stem cells using vibrational spectroscopy , 2009, Journal of biophotonics.

[31]  X. Xie,et al.  Polarization coherent anti-Stokes Raman scattering microscopy. , 2001, Optics letters.

[32]  M. Pera,et al.  Characterization and culture of human embryonic stem cells. , 2003, Trends in cardiovascular medicine.

[33]  Christoph Krafft,et al.  Disease recognition by infrared and Raman spectroscopy , 2009, Journal of biophotonics.

[34]  Ji-Xin Cheng,et al.  Compound Raman Microscopy for High-speed Vibrational Imaging and Spectral Analysis of Lipid Bodies , 2009, Microscopy and Microanalysis.

[35]  Alistair Elfick,et al.  A versatile CARS microscope for biological imaging , 2009 .

[36]  P. Vandenabeele,et al.  Reference database of Raman spectra of biological molecules , 2007 .

[37]  Kiang Wei Kho,et al.  Investigation into a surface plasmon related heating effect in surface enhanced Raman spectroscopy. , 2007, Analytical chemistry.

[38]  Alistair Elfick,et al.  Optimising tip-enhanced optical microscopy , 2009 .

[39]  Robert Langer,et al.  Tissue engineering: perspectives, challenges, and future directions. , 2007, Tissue engineering.

[40]  Gengfeng Zheng,et al.  Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology. , 2002, Biophysical journal.

[41]  Tak W. Kee,et al.  Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy. , 2004, Optics letters.

[42]  Gajendra P. Singh,et al.  Dual wavelength optical tweezers for confocal Raman spectroscopy , 2005 .

[43]  T. Katagiri,et al.  Cancer Diagnosis , 1992, Springer Berlin Heidelberg.

[44]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[45]  B. Dietzek,et al.  Raman and CARS microspectroscopy of cells and tissues. , 2009, The Analyst.

[46]  M D Duncan,et al.  Scanning coherent anti-Stokes Raman microscope. , 1982, Optics letters.

[47]  Mortazavi,et al.  Supporting Online Material Materials and Methods Figs. S1 to S13 Tables S1 to S3 References Label-free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy , 2022 .

[48]  Michael L. Wach,et al.  In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy. , 2000, Analytical chemistry.

[49]  J. Popp,et al.  Vibrational spectroscopy—A powerful tool for the rapid identification of microbial cells at the single‐cell level , 2009, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[50]  P G Etchegoin,et al.  A study of local heating of molecules under surface enhanced Raman scattering (SERS) conditions using the anti-Stokes/Stokes ratio. , 2006, Faraday discussions.

[51]  Riyi Shi,et al.  Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues. , 2005, Biophysical journal.

[52]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[53]  M. Morris,et al.  Application of vibrational spectroscopy to the study of mineralized tissues (review). , 2000, Journal of biomedical optics.

[54]  H. Tashiro,et al.  Improvement and analysis of a micro Raman probe. , 2009, Applied optics.

[55]  Ramasamy Manoharan,et al.  UV Resonance Raman Studies of Bacteria , 1992 .

[56]  Alistair Elfick,et al.  Heating effects in tip-enhanced optical microscopy. , 2006, Optics express.

[57]  Yong-qing Li,et al.  Near-infrared Raman spectroscopy of single optically trapped biological cells. , 2002, Optics letters.

[58]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[59]  W. R. Wiley,et al.  Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering , 1999 .

[60]  John M Chalmers,et al.  Infrared microscopy of epithelial cancer cells in whole tissues and in tissue culture, using synchrotron radiation. , 2004, Faraday discussions.

[61]  Robert Langer,et al.  EDITORIAL: TISSUE ENGINEERING: PERSPECTIVES, CHALLENGES, AND FUTURE DIRECTIONS , 2007 .

[62]  M. Boulton,et al.  Confocal Raman microscopy can quantify advanced glycation end product (AGE) modifications in Bruch's membrane leading to accurate, nondestructive prediction of ocular aging , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[63]  Conor L Evans,et al.  Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging. , 2006, Optics letters.

[64]  Richard T. Lee,et al.  Stem-cell therapy for cardiac disease , 2008, Nature.

[65]  Toshiaki Isobe,et al.  Cell surface biomarkers of embryonic stem cells , 2008, Proteomics.

[66]  M W Berns,et al.  Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry. , 1996, Biophysical journal.

[67]  Conor L Evans,et al.  Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Juleon M. Schins,et al.  Imaging the Thermodynamic State of Lipid Membranes with Multiplex CARS Microscopy , 2002 .

[69]  X. Xie,et al.  Coherent Anti-Stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications , 2004 .

[70]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[71]  Vincent Kanade,et al.  Clustering Algorithms , 2021, Wireless RF Energy Transfer in the Massive IoT Era.