A robust variational approach for simultaneous smoothing and estimation of DTI

Estimating diffusion tensors is an essential step in many applications - such as diffusion tensor image (DTI) registration, segmentation and fiber tractography. Most of the methods proposed in the literature for this task are not simultaneously statistically robust and feature preserving techniques. In this paper, we propose a novel and robust variational framework for simultaneous smoothing and estimation of diffusion tensors from diffusion MRI. Our variational principle makes use of a recently introduced total Kullback-Leibler (tKL) divergence for DTI regularization. tKL is a statistically robust dissimilarity measure for diffusion tensors, and regularization by using tKL ensures the symmetric positive definiteness of tensors automatically. Further, the regularization is weighted by a non-local factor adapted from the conventional non-local means filters. Finally, for the data fidelity, we use the nonlinear least-squares term derived from the Stejskal-Tanner model. We present experimental results depicting the positive performance of our method in comparison to competing methods on synthetic and real data examples.

[1]  Rachid Deriche,et al.  Impact of Rician Adapted Non-Local Means Filtering on HARDI , 2008, MICCAI.

[2]  Martin Styner,et al.  DTI registration in atlas based fiber analysis of infantile Krabbe disease , 2011, NeuroImage.

[3]  Nicholas Ayache,et al.  Clinical DT-MRI estimation, smoothing and fiber tracking with Log-Euclidean metrics , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[4]  M. Niethammer,et al.  On Diffusion Tensor Estimation , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[5]  Thomas L. Marzetta,et al.  EM algorithm for estimating the parameters of a multivariate complex Rician density for polarimetric SAR , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[6]  C. Westin,et al.  Sequential anisotropic Wiener filtering applied to 3D MRI data. , 2007, Magnetic resonance imaging.

[7]  Suyash P. Awate,et al.  Nonparametric Neighborhood Statistics for MRI Denoising , 2005, IPMI.

[8]  Ghassan Hamarneh,et al.  Bilateral Filtering of Diffusion Tensor Magnetic Resonance Images , 2007, IEEE Transactions on Image Processing.

[9]  DericheRachid,et al.  Vector-Valued Image Regularization with PDEs , 2005 .

[10]  Rachid Deriche,et al.  Brain Connectivity Mapping Using Riemannian Geometry, Control Theory, and PDEs , 2009, SIAM J. Imaging Sci..

[11]  René Vidal,et al.  Segmenting Fiber Bundles in Diffusion Tensor Images , 2008, ECCV.

[12]  Weili Lin,et al.  Regularization of diffusion tensor field using coupled robust anisotropic diffusion filters , 2009, IEEE Computer Society Conference on Computer Vision and Pattern Recognition workshops.

[13]  Vikas Singh,et al.  Epitome driven 3-D Diffusion Tensor image segmentation: on extracting specific structures , 2010, NIPS.

[14]  Pierrick Coupé,et al.  Fast Non Local Means Denoising for 3D MR Images , 2006, MICCAI.

[15]  Eric Wai Ming Lee,et al.  A constrained variational principle for heat conduction , 2009 .

[16]  Kaleem Siddiqi,et al.  Recent advances in diffusion MRI modeling: Angular and radial reconstruction , 2011, Medical Image Anal..

[17]  Rachid Deriche,et al.  A Riemannian approach to anisotropic filtering of tensor fields , 2007, Signal Process..

[18]  Paul M. Thompson,et al.  Extrapolation of Sparse Tensor Fields: Application to the Modeling of Brain Variability , 2005, IPMI.

[19]  Baba C. Vemuri,et al.  Groupwise Registration and Atlas Construction of 4th-Order Tensor Fields Using the R + Riemannian Metric , 2009, MICCAI.

[20]  Frank Nielsen,et al.  Total Bregman divergence and its applications to shape retrieval , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  Pierrick Coupé,et al.  Rician Noise Removal by Non-Local Means Filtering for Low Signal-to-Noise Ratio MRI: Applications to DT-MRI , 2008, MICCAI.

[22]  Dinggang Shen,et al.  Diffusion Tensor Image Registration Using Tensor Geometry and Orientation Features , 2008, MICCAI.

[23]  Derek K. Jones Diffusion MRI: Theory, methods, and applications , 2011 .

[24]  M. Smith,et al.  An unbiased signal-to-noise ratio measure for magnetic resonance images. , 1993, Medical physics.

[25]  Baba C. Vemuri,et al.  Regularized positive-definite fourth order tensor field estimation from DW-MRI , 2009, NeuroImage.

[26]  Carl-Fredrik Westin,et al.  Processing and visualization for diffusion tensor MRI , 2002, Medical Image Anal..

[27]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[28]  Rachid Deriche,et al.  Variational frameworks for DT-MRI estimation, regularization and visualization , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[29]  Alain Trouvé,et al.  Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents , 2011, NeuroImage.

[30]  B. Vemuri,et al.  Fiber tract mapping from diffusion tensor MRI , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[31]  Joseph A. O'Sullivan,et al.  ATR performance of a Rician model for SAR images , 2000, SPIE Defense + Commercial Sensing.

[32]  Rachid Deriche,et al.  Vector-valued image regularization with PDEs: a common framework for different applications , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Carl-Fredrik Westin,et al.  Noise and Signal Estimation in Magnitude MRI and Rician Distributed Images: A LMMSE Approach , 2008, IEEE Transactions on Image Processing.

[34]  Yunmei Chen,et al.  DT-MRI denoising and neuronal fiber tracking , 2004, Medical Image Anal..

[35]  Juan Ruiz-Alzola,et al.  Tensor signal processing , 2007, Signal Process..

[36]  Michael R. Greenberg,et al.  Chapter 1 – Theory, Methods, and Applications , 1978 .

[37]  Robert D. Nowak,et al.  Wavelet-based Rician noise removal for magnetic resonance imaging , 1999, IEEE Trans. Image Process..

[38]  Lei Guo,et al.  Brain tissue segmentation based on DTI data , 2007, NeuroImage.

[39]  Rachid Deriche,et al.  Variational, geometric, and statistical methods for modeling brain anatomy and function , 2004, NeuroImage.

[40]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[41]  Larry A. Kramer,et al.  Diffusion tensor imaging-based tissue segmentation: Validation and application to the developing child and adolescent brain , 2007, NeuroImage.

[42]  Zhizhou Wang,et al.  DTI segmentation using an information theoretic tensor dissimilarity measure , 2005, IEEE Transactions on Medical Imaging.

[43]  Jean-Francois Mangin,et al.  Real-time MR diffusion tensor and Q-ball imaging using Kalman filtering , 2008, Medical Image Anal..

[44]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[45]  Santiago Aja-Fernández,et al.  DWI filtering using joint information for DTI and HARDI , 2010, Medical Image Anal..

[46]  Zhizhou Wang,et al.  A Constrained Variational Principle for Direct Estimation and Smoothing of the Diffusion Tensor Field from DWI , 2003, IPMI.

[47]  Zhizhou Wang,et al.  A constrained variational principle for direct estimation and smoothing of the diffusion tensor field from complex DWI , 2004, IEEE Transactions on Medical Imaging.

[48]  Maxime Descoteaux,et al.  Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom , 2011, NeuroImage.

[49]  Pierrick Coupé,et al.  An Optimized Blockwise Nonlocal Means Denoising Filter for 3-D Magnetic Resonance Images , 2008, IEEE Transactions on Medical Imaging.

[50]  Baba C. Vemuri,et al.  Adaptive Kernels for Multi-fiber Reconstruction , 2009, IPMI.

[51]  Cheng Guan Koay,et al.  Analytically exact correction scheme for signal extraction from noisy magnitude MR signals. , 2006, Journal of magnetic resonance.

[52]  Yonggang Lu,et al.  Unified framework for anisotropic interpolation and smoothing of diffusion tensor images , 2006, NeuroImage.

[53]  Jerry L. Prince,et al.  Diffusion Tensor Estimation by Maximizing Rician Likelihood , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[54]  Martin Styner,et al.  FADTTS: Functional analysis of diffusion tensor tract statistics , 2011, NeuroImage.

[55]  Ross T. Whitaker,et al.  Rician Noise Removal in Diffusion Tensor MRI , 2006, MICCAI.

[56]  Olivier Clatz,et al.  DT-REFinD: Diffusion Tensor Registration With Exact Finite-Strain Differential , 2009, IEEE Transactions on Medical Imaging.

[57]  E. Bullmore,et al.  Formal characterization and extension of the linearized diffusion tensor model , 2005, Human brain mapping.

[58]  Maher Moakher,et al.  A rigorous framework for diffusion tensor calculus , 2005, Magnetic resonance in medicine.

[59]  Isabelle Bloch,et al.  Distortion correction and robust tensor estimation for MR diffusion imaging , 2002, Medical Image Anal..

[60]  Dinggang Shen,et al.  Application of neuroanatomical features to tractography clustering , 2013, Human brain mapping.

[61]  Ron Kimmel,et al.  A Short- Time Beltrami Kernel for Smoothing Images and Manifolds , 2007, IEEE Transactions on Image Processing.

[62]  Ernesto Zacur,et al.  Multivariate Tensor-Based Morphometry with a Right-Invariant Riemannian Distance on GL+(n) , 2013, Journal of Mathematical Imaging and Vision.

[63]  Katrin Amunts,et al.  White matter fiber tracts of the human brain: Three-dimensional mapping at microscopic resolution, topography and intersubject variability , 2006, NeuroImage.

[64]  Paul M. Thompson,et al.  Multivariate Tensor-based Morphometry on Surfaces: Application to Mapping Ventricular Abnormalities in Hiv/aids Mapping Methods Have Revealed the 3d Profile of Structural Brain , 2022 .

[65]  Dinggang Shen,et al.  Intermediate templates guided groupwise registration of diffusion tensor images , 2011, NeuroImage.

[66]  Frank Nielsen,et al.  This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 1 Total Bregman Divergence and its Applications to DTI Analysis , 2022 .

[67]  Rachid Deriche,et al.  Labeling of ambiguous subvoxel fibre bundle configurations in high angular resolution diffusion MRI , 2008, NeuroImage.

[68]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[69]  Derek K. Jones,et al.  RESTORE: Robust estimation of tensors by outlier rejection , 2005, Magnetic resonance in medicine.

[70]  Arthur W. Toga,et al.  Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template , 2008, NeuroImage.

[71]  José V. Manjón,et al.  MRI denoising using Non-Local Means , 2008, Medical Image Anal..

[72]  Susumu Mori,et al.  Fiber tracking: principles and strategies – a technical review , 2002, NMR in biomedicine.

[73]  Yehoshua Y. Zeevi,et al.  Image enhancement and denoising by complex diffusion processes , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[74]  Baba C. Vemuri,et al.  Statistical Analysis of Tensor Fields , 2010, MICCAI.

[75]  Rachid Deriche,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.

[76]  Gene H. Golub,et al.  Matrix computations , 1983 .

[77]  Santiago Aja-Fernández,et al.  Noise estimation in single- and multiple-coil magnetic resonance data based on statistical models. , 2009, Magnetic resonance imaging.

[78]  Aleksandra Pizurica,et al.  A versatile wavelet domain noise filtration technique for medical imaging , 2003, IEEE Transactions on Medical Imaging.

[79]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[80]  Alfred Anwander,et al.  Segregating the core computational faculty of human language from working memory , 2009, Proceedings of the National Academy of Sciences.

[81]  Nir A. Sochen,et al.  Fast Invariant Riemannian DT-MRI Regularization , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[82]  J. Sijbers,et al.  Maximum likelihood estimation of signal amplitude and noise variance from MR data , 2004, Magnetic resonance in medicine.

[83]  Rachid Deriche,et al.  DTI segmentation by statistical surface evolution , 2006, IEEE Transactions on Medical Imaging.

[84]  J. Mangin,et al.  New diffusion phantoms dedicated to the study and validation of high‐angular‐resolution diffusion imaging (HARDI) models , 2008, Magnetic resonance in medicine.