Effective Conductivity of Nonlinear Two-Phase Media: Homogenization and Two-Point Padé Approximants

The aim of this paper is a study of the quasilinear transport equation, for instance the stationary heat equation. For periodically microheterogeneous media asymptotic homogenization has been performed with the local problem formulated as a minimization problem. The Golden–Papanicolaou integral representation theorem and some bounds developed for the linear equation have been extended. Two-point Padé approximants have been used to calculate bounds. Examples are also provided.

[1]  Gianni Dal Maso,et al.  Composite Media and Homogenization Theory , 1991 .

[2]  Adhemar Bultheel,et al.  Quadrature on the half line and two-point Padé approximants to Stieltjes functions. Part I: A , 1995 .

[3]  R. Wojnar,et al.  Thermodiffusion in heterogeneous elastic solids and homogenization , 1994 .

[4]  G. Dal Maso,et al.  Composite Media & Homogenization Theory: Proceedings of the Second Workshop , 1995 .

[5]  Stanislaw Tokarzewski,et al.  Two-point Padé approximants for formal Stieltjes series , 1994, Numerical Algorithms.

[6]  Mohammed Hnid,et al.  Étude de transmission à travers des inclusions minces faiblement conductrice de «codimension un» : homogénéisation et optimisation des structures , 1990 .

[7]  Heat transfer and fluid mechanics: Non linear diffusion equations in heterogeneous media , 1988 .

[8]  V. Nesi Using quasiconvex functionals to bound the effective conductivity of composite materials , 1993, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[9]  V. Nesi Bounds on the effective conductivity of two-dimensional composites made of n ≧ 3 isotropic phases in prescribed volume fraction: the weighted translation method , 1995, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[10]  G. Papanicolaou,et al.  Les méthodes de l'homogénéisation : théorie et applications en physique , 1985 .

[11]  Homogénéisation des équations de la diffusion stationnaire dans les domaines cylindriques aplatis , 1981 .

[12]  Andrej Cherkaev,et al.  Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportion , 1984, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[13]  L. Gibiansky,et al.  The exact coupled bounds for effective tensors of electrical and magnetic properties of two-component two-dimensional composites , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[14]  S. Tokarzewski,et al.  Continued fraction representation for the effective thermal conductivity coefficient of a regular two-component composite , 1994 .

[15]  Michel Artola,et al.  Un résultat d'homogénéisation pour une classe de problèmes de diffusion non linéaires stationnaires , 1982 .

[16]  A Posteriori Bounds for the Truncation Error of Continued Fractions , 1971 .

[17]  V. Nesi Multiphase interchange inequalities , 1991 .

[18]  Graeme W. Milton,et al.  Asymptotic studies of closely spaced, highly conducting cylinders , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[19]  S. Tokarzewski N -point Pade´ approximants to real-valued Stieltjes series with nonzero radii of convergence , 1996 .

[20]  K. E. Clark,et al.  Optimal bounds correlating electric, magnetic and thermal properties of two-phase, two-dimensional composites , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[21]  George Papanicolaou,et al.  Bounds for effective parameters of heterogeneous media by analytic continuation , 1983 .

[22]  Robert V. Kohn,et al.  On Bounding the Effective Conductivity of Anisotropic Composites , 1986 .

[23]  C. Saavedra,et al.  Quantum flows associated to master equations in quantum optics , 1994 .

[24]  Kenneth M. Golden,et al.  Bounds on the complex permittivity of a multicomponent material , 1986 .

[25]  Naotake Noda,et al.  Thermal Stresses in Materials with Temperature-Dependent Properties , 1991 .

[26]  Effective conductivity for densely packed highly conducting cylinders , 1994 .

[27]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[28]  S. Weinbaum,et al.  A new simplified bioheat equation for the effect of blood flow on local average tissue temperature. , 1985, Journal of biomechanical engineering.

[29]  Adhemar Bultheel,et al.  Laurent Series and their Padé Approximations , 1987 .

[30]  Nicola Fusco,et al.  On the homogenization of quasilinear divergence structure operators , 1986 .

[31]  Convergence of two-point Pade´ approximants to series of Stieltjes , 1990 .

[32]  Andrej Cherkaev,et al.  Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli , 1994 .

[33]  J. J. Telega,et al.  Inequalities for Two-Point Padé Approximants to the Expansions of Stieltjes Functions in a Real Domain , 1997 .

[34]  J. J. Telega,et al.  Nonlinear transport equation and macroscopic properties of microheterogeneous media , 1997 .

[35]  J. Brady,et al.  The effective conductivity of random suspensions of spherical particles , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[36]  G. A. Baker Best Error Bounds for Padé Approximants to Convergent Series of Stieltjes , 1969 .

[37]  G. A. Baker Essentials of Padé approximants , 1975 .

[38]  A scalar inequality which bounds the effective conductivity of composites , 1990, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[39]  K. Sab Homogenization of non-linear random media by a duality method. Application to plasticity , 1994 .

[40]  Ahmed K. Noor,et al.  Computational Models for High-Temperature Multilayered Composite Plates and Shells , 1992 .

[41]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[42]  F. Bardati,et al.  On the solution of the non-linear bio-heat equation. , 1990, Journal of biomechanics.

[43]  George Papanicolaou,et al.  Bounds for effective parameters of multicomponent media by analytic continuation , 1985 .

[44]  David J. Bergman,et al.  The dielectric constant of a composite material—A problem in classical physics , 1978 .

[45]  R. Kohn,et al.  Variational bounds on the effective moduli of anisotropic composites , 1988 .

[46]  William B. Jones,et al.  Two-point Padé expansions for a family of analytic functions☆ , 1983 .