CRB1 mutations in inherited retinal dystrophies

Mutations in the CRB1 gene are associated with variable phenotypes of severe retinal dystrophies, ranging from leber congenital amaurosis (LCA) to rod–cone dystrophy, also called retinitis pigmentosa (RP). Moreover, retinal dystrophies resulting from CRB1 mutations may be accompanied by specific fundus features: preservation of the para‐arteriolar retinal pigment epithelium (PPRPE) and retinal telangiectasia with exudation (also referred to as Coats‐like vasculopathy). In this publication, we report seven novel mutations and classify over 150 reported CRB1 sequence variants that were found in more that 240 patients. The data from previous reports were used to analyze a potential correlation between CRB1 variants and the clinical features of respective patients. This meta‐analysis suggests that the differential phenotype of patients with CRB1 mutations is due to additional modifying factors rather than particular mutant allele combination. Hum Mutat 33:306–315, 2012. © 2011 Wiley Periodicals, Inc.

[1]  Philippe M. Campeau,et al.  Genotype-Phenotype Correlation , 2014 .

[2]  T. Strom,et al.  Molecular genetic analysis of retinitis pigmentosa in Indonesia using genome-wide homozygosity mapping , 2011, Molecular vision.

[3]  T. Strom,et al.  Identification of novel mutations in Pakistani families with autosomal recessive retinitis pigmentosa. , 2011, Archives of ophthalmology.

[4]  J. Hejtmancik,et al.  Detection of Variants in 15 Genes in 87 Unrelated Chinese Patients with Leber Congenital Amaurosis , 2011, PloS one.

[5]  C. Villanueva-Mendoza,et al.  Homozygosity mapping identifies the Crumbs homologue 1 (Crb1) gene as responsible for a recessive syndrome of retinitis pigmentosa and nanophthalmos , 2011, American journal of medical genetics. Part A.

[6]  C. Willoughby,et al.  Development of a diagnostic genetic test for simplex and autosomal recessive retinitis pigmentosa. , 2010, Ophthalmology.

[7]  Dorothy A. Thompson,et al.  Phenotypic variability in patients with retinal dystrophies due to mutations in CRB1 , 2010, British Journal of Ophthalmology.

[8]  T. de Ravel,et al.  Genetic Screening of LCA in Belgium: Predominance of CEP290 and Identification of Potential Modifier Alleles in AHI1 of CEP290-related Phenotypes , 2010, Human mutation.

[9]  M. Bach,et al.  ABCA4 and ROM1: implications for modification of the PRPH2-associated macular dystrophy phenotype. , 2010, Investigative ophthalmology & visual science.

[10]  T. Aleman,et al.  Visual acuity in patients with Leber's congenital amaurosis and early childhood-onset retinitis pigmentosa. , 2010, Ophthalmology.

[11]  J. Sahel,et al.  EYS is a major gene for rod‐cone dystrophies in France , 2010, Human mutation.

[12]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[13]  D. Schorderet,et al.  NR2E3 mutations in enhanced S‐cone sensitivity syndrome (ESCS), Goldmann‐Favre syndrome (GFS), clumped pigmentary retinal degeneration (CPRD), and retinitis pigmentosa (RP) , 2009, Human mutation.

[14]  G. Fishman,et al.  CRB1 gene mutations are associated with keratoconus in patients with leber congenital amaurosis. , 2009, Investigative ophthalmology & visual science.

[15]  Peter Nürnberg,et al.  HomozygosityMapper—an interactive approach to homozygosity mapping , 2009, Nucleic Acids Res..

[16]  R. Spiegel,et al.  Genetic heterogeneity in two consanguineous families segregating early onset retinal degeneration: The pitfalls of homozygosity mapping , 2009, American journal of medical genetics. Part A.

[17]  S. Tsang,et al.  Case Report: Autofluorescence Imaging and Phenotypic Variance in a Sibling Pair with Early-Onset Retinal Dystrophy Due to Defective CRB1 Function , 2009, Current eye research.

[18]  J. Y. Kim,et al.  Molecular characterization of Leber congenital amaurosis in Koreans , 2008, Molecular vision.

[19]  G. Fishman,et al.  The prevalence of cystoid macular oedema in retinitis pigmentosa patients determined by optical coherence tomography , 2008, British Journal of Ophthalmology.

[20]  R. Roepman,et al.  Leber congenital amaurosis: Genes, proteins and disease mechanisms , 2008, Progress in Retinal and Eye Research.

[21]  A. D. den Hollander,et al.  Composition and function of the Crumbs protein complex in the mammalian retina. , 2008, Experimental eye research.

[22]  R. Wilke,et al.  Molecular analysis of ABCA4 and CRB1 genes in a Spanish family segregating both Stargardt disease and autosomal recessive retinitis pigmentosa , 2008, Molecular vision.

[23]  R. Wilke,et al.  Mutation screening of 299 Spanish families with retinal dystrophies by Leber congenital amaurosis genotyping microarray. , 2007, Investigative ophthalmology & visual science.

[24]  J. Hehir-Kwa,et al.  Identification of novel mutations in patients with Leber congenital amaurosis and juvenile RP by genome-wide homozygosity mapping with SNP microarrays. , 2007, Investigative ophthalmology & visual science.

[25]  Dorothy A. Thompson,et al.  An assessment of the apex microarray technology in genotyping patients with Leber congenital amaurosis and early-onset severe retinal dystrophy. , 2007, Investigative ophthalmology & visual science.

[26]  D. Schorderet,et al.  Novel TULP1 mutation causing leber congenital amaurosis or early onset retinal degeneration. , 2007, Investigative ophthalmology & visual science.

[27]  A. Ciccodicola,et al.  Clinical and molecular genetics of Leber's congenital amaurosis: a multicenter study of Italian patients. , 2007, Investigative ophthalmology & visual science.

[28]  E. Vallespín,et al.  Human gene mutations. Gene symbol: CRB1. Disease: late onset retinitis pigmentosa. , 2007, Human Genetics.

[29]  D. Cane,et al.  The nonsense-mediated decay RNA surveillance pathway. , 2007, Annual review of biochemistry.

[30]  M. Seeliger,et al.  A Single Amino Acid Substitution (Cys249Trp) in Crb1 Causes Retinal Degeneration and Deregulates Expression of Pituitary Tumor Transforming Gene Pttg1 , 2007, The Journal of Neuroscience.

[31]  J. Szlyk,et al.  CRB1 heterozygotes with regional retinal dysfunction: implications for genetic testing of leber congenital amaurosis. , 2006, Investigative ophthalmology & visual science.

[32]  J. Cruysberg,et al.  Microarray-based mutation detection and phenotypic characterization of patients with Leber congenital amaurosis. , 2006, Investigative ophthalmology & visual science.

[33]  P. D. de Jong,et al.  Identification of mutations in the AIPL1, CRB1, GUCY2D, RPE65, and RPGRIP1 genes in patients with juvenile retinitis pigmentosa , 2005, Journal of Medical Genetics.

[34]  G. Fishman,et al.  EVALUATION OF GENOTYPE–PHENOTYPE ASSOCIATIONS IN LEBER CONGENITAL AMAUROSIS , 2005, Retina.

[35]  A. Swaroop,et al.  Recessive NRL mutations in patients with clumped pigmentary retinal degeneration and relative preservation of blue cone function. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Jason J. Davis,et al.  CRB1 mutation spectrum in inherited retinal dystrophies , 2004, Human mutation.

[37]  M. Seeliger,et al.  Crumbs homologue 1 is required for maintenance of photoreceptor cell polarization and adhesion during light exposure , 2004, Journal of Cell Science.

[38]  A. Munnich,et al.  Leber congenital amaurosis: Comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype–phenotype correlations as a strategy for molecular diagnosis , 2004, Human mutation.

[39]  D. Sharon,et al.  Shared mutations in NR2E3 in enhanced S-cone syndrome, Goldmann-Favre syndrome, and many cases of clumped pigmentary retinal degeneration. , 2003, Archives of ophthalmology.

[40]  Ulrich Tepass,et al.  CRB1 is essential for external limiting membrane integrity and photoreceptor morphogenesis in the mammalian retina. , 2003, Human molecular genetics.

[41]  J. Rosell,et al.  Study of the involvement of the RGR, CRPB1, and CRB1 genes in the pathogenesis of autosomal recessive retinitis pigmentosa , 2003, Journal of medical genetics.

[42]  Steven Henikoff,et al.  SIFT: predicting amino acid changes that affect protein function , 2003, Nucleic Acids Res..

[43]  B. Lorenz,et al.  Genotyping microarray (disease chip) for Leber congenital amaurosis: detection of modifier alleles. , 2003, Investigative ophthalmology & visual science.

[44]  Edwin M Stone,et al.  Crumbs homolog 1 (CRB1) mutations result in a thick human retina with abnormal lamination. , 2003, Human molecular genetics.

[45]  S. Q. Mehdi,et al.  Mutation screening of Pakistani families with congenital eye disorders. , 2003, Experimental eye research.

[46]  U. Tepass,et al.  Crumbs, the Drosophila homologue of human CRB1/RP12, is essential for photoreceptor morphogenesis , 2002, Nature.

[47]  A. Ballabio,et al.  Isolation of Crb1, a mouse homologue of Drosophila crumbs, and analysis of its expression pattern in eye and brain , 2002, Mechanisms of Development.

[48]  A. Munnich,et al.  A novel mutation disrupting the cytoplasmic domain of CRB1 in a large consanguineous family of Palestinian origin affected with Leber congenital amaurosis , 2002, Ophthalmic genetics.

[49]  M. O'Keefe,et al.  Classification of the spectrum of Coats' disease as subtypes of idiopathic retinal telangiectasis with exudation. , 2001, Acta ophthalmologica Scandinavica.

[50]  A. D. den Hollander,et al.  CRB1 has a cytoplasmic domain that is functionally conserved between human and Drosophila. , 2001, Human molecular genetics.

[51]  Bethan E. Hoskins,et al.  Triallelic Inheritance in Bardet-Biedl Syndrome, a Mendelian Recessive Disorder , 2001, Science.

[52]  K Rohrschneider,et al.  Leber congenital amaurosis and retinitis pigmentosa with Coats-like exudative vasculopathy are associated with mutations in the crumbs homologue 1 (CRB1) gene. , 2001, American journal of human genetics.

[53]  V. Sheffield,et al.  Mutations in the CRB1 gene cause Leber congenital amaurosis. , 2001, Archives of ophthalmology.

[54]  E. Stone,et al.  CRB1 mutations may result in retinitis pigmentosa without para-arteriolar RPE preservation , 2001, Ophthalmic genetics.

[55]  A. Deutman,et al.  Mutations in a human homologue of Drosophila crumbs cause retinitis pigmentosa (RP12) , 1999, Nature Genetics.

[56]  U. Tepass,et al.  crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia , 1990, Cell.

[57]  J. Heckenlively Preserved para-arteriole retinal pigment epithelium (PPRPE) in retinitis pigmentosa. , 1982, The British journal of ophthalmology.

[58]  Th. Leber,et al.  Ueber Retinitis pigmentosa und angeborene Amaurose , 1869, Archiv für Ophthalmologie.

[59]  K. Springell,et al.  Genotype-phenotype correlation for leber congenital amaurosis in Northern Pakistan. , 2010, Archives of ophthalmology.

[60]  O. Mueller,et al.  Novel human pathological mutations , 2008, Human Genetics.

[61]  E. Vallespín,et al.  Novel human pathological mutations. Gene symbol: ABCA4. Disease: Stargardt disease. , 2007, Human Genetics.

[62]  G. Silvestri,et al.  Pigmented paravenous chorioretinal atrophy is associated with a mutation within the crumbs homolog 1 (CRB1) gene. , 2005, Investigative ophthalmology & visual science.

[63]  B. Bonné-Tamir,et al.  Human gene mutations , 1999, Human Genetics.

[64]  A. Franceschetti,et al.  [Diagnostic and prognostic importance of the electroretinogram in tapetoretinal degeneration with reduction of the visual field and hemeralopia]. , 1954, Confinia neurologica.

[65]  A. Franceschetti,et al.  Importance diagnostique et pronostique de l'électrorétinogramme (ERG) dans les dégénérescences tapéto-rétiniennes avec rétrécissement du champ visuel et héméralopie , 1954 .