Aging-associated changes of movement-related functional connectivity in the human brain

[1]  Bin A. Wang,et al.  Age-related changes in oscillatory power affect motor action , 2017, PloS one.

[2]  Shivakumar Viswanathan,et al.  Frequency-specific modulation of connectivity in the ipsilateral sensorimotor cortex by different forms of movement initiation , 2017, NeuroImage.

[3]  Silvia Daun-Gruhn,et al.  Movement-related phase locking in the delta–theta frequency band , 2016, NeuroImage.

[4]  Claus-Peter Richter,et al.  Evaluation of Electroencephalography Source Localization Algorithms with Multiple Cortical Sources , 2016, PloS one.

[5]  P. Fries Rhythms for Cognition: Communication through Coherence , 2015, Neuron.

[6]  Simon B. Eickhoff,et al.  Network dynamics engaged in the modulation of motor behavior in healthy subjects , 2013, NeuroImage.

[7]  N. Kanemura,et al.  A novel approach for evaluating nerve function in healthy elderly persons: A pilot study , 2013, Medical science monitor : international medical journal of experimental and clinical research.

[8]  M. Brass,et al.  Top-down modulation of brain activity underlying intentional action and its relationship with awareness of intention: an ERP/Laplacian analysis , 2013, Experimental Brain Research.

[9]  Andreas Daffertshofer,et al.  Neural synchrony within the motor system: what have we learned so far? , 2012, Front. Hum. Neurosci..

[10]  C. Grady The cognitive neuroscience of ageing , 2012, Nature Reviews Neuroscience.

[11]  J. Palva,et al.  Discovering oscillatory interaction networks with M/EEG: challenges and breakthroughs , 2012, Trends in Cognitive Sciences.

[12]  William D. Penny,et al.  Age-related changes in causal interactions between cortical motor regions during hand grip , 2012, NeuroImage.

[13]  Daniel M. Alschuler,et al.  Current Source Density Measures of Electroencephalographic Alpha Predict Antidepressant Treatment Response , 2011, Biological Psychiatry.

[14]  Dylan D. Schmorrow,et al.  Foundations of Augmented Cognition. Directing the Future of Adaptive Systems , 2011, Lecture Notes in Computer Science.

[15]  Robert Oostenveld,et al.  An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias , 2011, NeuroImage.

[16]  R. Cabeza,et al.  Neuroimaging of Healthy Cognitive Aging , 2011 .

[17]  Joseph T. Gwin,et al.  Motor control and aging: Links to age-related brain structural, functional, and biochemical effects , 2010, Neuroscience & Biobehavioral Reviews.

[18]  Rachael D. Seidler,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[19]  Eugenio Rodriguez,et al.  Neural synchrony and the development of cortical networks , 2010, Trends in Cognitive Sciences.

[20]  Bart Vanrumste,et al.  EEG/MEG Source Imaging: Methods, Challenges, and Open Issues , 2009, Comput. Intell. Neurosci..

[21]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[22]  Bart Vanrumste,et al.  Journal of Neuroengineering and Rehabilitation Open Access Review on Solving the Inverse Problem in Eeg Source Analysis , 2022 .

[23]  N. Ward,et al.  Age-dependent changes in the neural correlates of force modulation: An fMRI study , 2008, Neurobiology of Aging.

[24]  P. Reuter-Lorenz,et al.  Neurocognitive Aging and the Compensation Hypothesis , 2008 .

[25]  G. Fink,et al.  Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging , 2008, Annals of neurology.

[26]  M. Hallett,et al.  What is the Bereitschaftspotential? , 2006, Clinical Neurophysiology.

[27]  Richard S. Frackowiak,et al.  Aging is associated with contrasting changes in local and distant cortical connectivity in the human motor system , 2006, NeuroImage.

[28]  Dave Forrester,et al.  Theta phase locking across the neocortex reflects cortico-hippocampal recursive communication during goal conflict resolution. , 2006, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[29]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[30]  S. Swinnen,et al.  Neural Basis of Aging: The Penetration of Cognition into Action Control , 2005, The Journal of Neuroscience.

[31]  M. Hallett,et al.  The influence of normal human ageing on automatic movements , 2005, The Journal of physiology.

[32]  Thomas Grunwald,et al.  Neural Bases of Cognitive ERPs: More than Phase Reset , 2004, Journal of Cognitive Neuroscience.

[33]  M. Hallett,et al.  Identifying true brain interaction from EEG data using the imaginary part of coherency , 2004, Clinical Neurophysiology.

[34]  H. Kornhuber,et al.  Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale , 1965, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[35]  R. Cabeza Hemispheric asymmetry reduction in older adults: the HAROLD model. , 2002, Psychology and aging.

[36]  B. Agrell,et al.  Clock Drawing Test , 2013 .

[37]  R N Lemon,et al.  Synchronization in monkey motor cortex during a precision grip task. I. Task-dependent modulation in single-unit synchrony. , 2001, Journal of neurophysiology.

[38]  C. Gerloff,et al.  The influence of normal aging on the cortical processing of a simple motor task , 2000, Neurology.

[39]  Edward E. Smith,et al.  Age Differences in the Frontal Lateralization of Verbal and Spatial Working Memory Revealed by PET , 2000, Journal of Cognitive Neuroscience.

[40]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[41]  F. Varela,et al.  Measuring phase synchrony in brain signals , 1999, Human brain mapping.

[42]  Marcia K. Johnson,et al.  The role of prefrontal cortex during tests of episodic memory , 1998, Trends in Cognitive Sciences.

[43]  S. Roesch,et al.  A comparison of the factor structure of processing speed for younger and older adults: testing the assumption of measurement equivalence across age groups. , 1997, Psychology and aging.

[44]  E. Olivier,et al.  Coherent oscillations in monkey motor cortex and hand muscle EMG show task‐dependent modulation , 1997, The Journal of physiology.

[45]  Anthony R. McIntosh,et al.  Age-Related Differences in Neural Activity during Memory Encoding and Retrieval: A Positron Emission Tomography Study , 1997, The Journal of Neuroscience.

[46]  Tzyy-Ping Jung,et al.  Independent Component Analysis of Electroencephalographic Data , 1995, NIPS.

[47]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[48]  O. Selnes A Compendium of Neuropsychological Tests , 1991, Neurology.

[49]  M. Mitrushina,et al.  Analysis of longitudinal covariance structures in assessment of stability of cognitive functions in elderly , 1991 .

[50]  O. Spreen,et al.  A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary , 1991 .

[51]  H. Steinmetz,et al.  Craniocerebral topography within the international 10-20 system. , 1989, Electroencephalography and clinical neurophysiology.

[52]  B. Hjorth An on-line transformation of EEG scalp potentials into orthogonal source derivations. , 1975, Electroencephalography and clinical neurophysiology.

[53]  S. Folstein,et al.  "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. , 1975, Journal of psychiatric research.

[54]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[55]  A. Beck,et al.  An inventory for measuring depression. , 1961, Archives of general psychiatry.