Multidimensional Mereotopology with Betweenness

Qualitative reasoning about commonsense space often involves entities of different dimensions. We present a weak axiomatization of multidimensional qualitative space based on 'relative dimension' and dimension-independent 'containment' which suffice to define basic dimension-dependent mereotopological relations. We show the relationships to other meoreotopologies and to incidence geometry. The extension with betweenness, a primitive of relative position, results in a first-order theory that qualitatively abstracts ordered incidence geometry.

[1]  Antony Galton Taking Dimension Seriously in Qualitative Spatial Reasoning , 1996, ECAI.

[2]  Andrew U. Frank,et al.  Qualitative Spatial Reasoning: Cardinal Directions as an Example , 1996, Int. J. Geogr. Inf. Sci..

[3]  E. V. Huntington,et al.  Sets of independent postulates for betweenness , 1917 .

[4]  ARTHUR RICHARD SCHWEITZER ON A SYSTEM OF AXIOMS FOR GEOMETRY ' BY , 2010 .

[5]  Lars Kulik,et al.  An Axiomatic Approach to the Spatial Relations Underlying Left-Right and in Front of-Behind , 1997, KI.

[6]  Ryszard Engelking,et al.  Theory of dimensions : finite and infinite , 1995 .

[7]  S. Griffis EDITOR , 1997, Journal of Navigation.

[8]  Markus Schneider,et al.  Dimension-refined topological predicates , 2005, GIS '05.

[9]  David Hilbert,et al.  The Foundations of Geometry , 1903, The Mathematical Gazette.

[10]  Oswald Veblen,et al.  A system of axioms for geometry , 1904 .

[11]  Antony Galton Multidimensional Mereotopology , 2004, KR.

[12]  Christian Freksa,et al.  Using Orientation Information for Qualitative Spatial Reasoning , 1992, Spatio-Temporal Reasoning.

[14]  Alfred Tarski,et al.  Tarski's System of Geometry , 1999, Bulletin of Symbolic Logic.

[15]  Torsten Hahmann,et al.  A Naive Theory of Dimension for Qualitative Spatial Relations , 2011, AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning.

[16]  Anthony G. Cohn,et al.  Qualitative Spatial Representation and Reasoning: An Overview , 2001, Fundam. Informaticae.

[17]  Stefano Borgo,et al.  Full Mereogeometries , 2010, Rev. Symb. Log..

[18]  M. Egenhofer Categorizing Binary Topological Relations Between Regions, Lines, and Points in Geographic Databases , 1998 .

[19]  Iris Loeb,et al.  On Tarski's foundations of the geometry of solids , 2012, Bull. Symb. Log..

[20]  Michael Winter,et al.  A representation theorem for Boolean contact algebras , 2005, Theor. Comput. Sci..

[21]  Eliseo Clementini,et al.  A Small Set of Formal Topological Relationships Suitable for End-User Interaction , 1993, SSD.

[22]  Nicholas Mark GottsDivision Formalizing Commonsense Topology : The INCH Calculus , 1996 .