Interleaved Polar (I-Polar) Codes

By inserting interleavers between intermediate stages of the polar encoder, a new class of polar codes, termed interleaved polar (i-polar) codes, is proposed. By the uniform interleaver assumption, we derive the weight enumerating function (WEF) and the input-output weight enumerating function (IOWEF) averaged over the ensemble of i-polar codes. The average WEF can be used to calculate the upper bound on the average block error rate (BLER) of a code selected at random from the ensemble of i-polar codes. Also, we propose a concatenated coding scheme that employs <inline-formula> <tex-math notation="LaTeX">$P$ </tex-math></inline-formula> high rate codes as the outer code and <inline-formula> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula> i-polar codes as the inner code with an interleaver in between. The average WEF of the concatenated code is derived based on the uniform interleaver assumption. Simulation results show that BLER upper bounds can well predict BLER performance levels of the concatenated codes. The results show that the performance of the proposed concatenated code with <inline-formula> <tex-math notation="LaTeX">$P=Q=2$ </tex-math></inline-formula> is better than that of the CRC-aided i-polar code with <inline-formula> <tex-math notation="LaTeX">$P=Q=1$ </tex-math></inline-formula> of the same length and code rate at high signal-to-noise ratios (SNRs). Moreover, the proposed concatenated code allows multiple decoders to operate in parallel, which can reduce the decoding latency and hence is suitable for ultra-reliable low-latency communications (URLLC).

[1]  Paul H. Siegel,et al.  Enhanced belief propagation decoding of polar codes through concatenation , 2014, 2014 IEEE International Symposium on Information Theory.

[2]  Masakatu Morii,et al.  A probabilistic computation method for the weight distribution of low-density parity-check codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[3]  Zhongwei Si,et al.  Does Gaussian Approximation Work Well for the Long-Length Polar Code Construction? , 2015, IEEE Access.

[4]  Sergio Benedetto,et al.  Unveiling turbo codes: some results on parallel concatenated coding schemes , 1996, IEEE Trans. Inf. Theory.

[5]  Kai Chen,et al.  CRC-Aided Decoding of Polar Codes , 2012, IEEE Communications Letters.

[6]  Tomaso Erseghe,et al.  Coding in the Finite-Blocklength Regime: Bounds Based on Laplace Integrals and Their Asymptotic Approximations , 2015, IEEE Transactions on Information Theory.

[7]  Bin Li,et al.  An Adaptive Successive Cancellation List Decoder for Polar Codes with Cyclic Redundancy Check , 2012, IEEE Communications Letters.

[8]  Peter Trifonov,et al.  Efficient Design and Decoding of Polar Codes , 2012, IEEE Transactions on Communications.

[9]  Shengmei Zhao,et al.  Designs of Bhattacharyya Parameter in the Construction of Polar Codes , 2011, 2011 7th International Conference on Wireless Communications, Networking and Mobile Computing.

[10]  Dariush Divsalar,et al.  Serial Concatenation of Interleaved Codes: Performance Analysis, Design, and Iterative Decoding , 1997, IEEE Trans. Inf. Theory.

[11]  Yifei Zhang,et al.  Structured IRA Codes: Performance Analysis and Construction , 2007, IEEE Transactions on Communications.

[12]  Mao-Ching Chiu Polynomial Representations of Polar Codes and Decoding under Overcomplete Representations , 2013, IEEE Communications Letters.

[13]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[14]  K. Niu,et al.  Stack decoding of polar codes , 2012 .

[15]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[16]  Alexios Balatsoukas-Stimming,et al.  LLR-Based Successive Cancellation List Decoding of Polar Codes , 2013, IEEE Transactions on Signal Processing.

[17]  Alexander Vardy,et al.  List decoding of polar codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[18]  Jungwon Lee,et al.  Performance Limits and Practical Decoding of Interleaved Reed-Solomon Polar Concatenated Codes , 2013, IEEE Transactions on Communications.

[19]  D. Divsalar A Simple Tight Bound on Error Probability of Block Codes with Application to Turbo Codes , 1999 .

[20]  Aijun Liu,et al.  An Enhanced Probabilistic Computation Method for the Weight Distribution of Polar Codes , 2017, IEEE Communications Letters.

[21]  H. Jin,et al.  Irregular repeat accumulate codes , 2000 .

[22]  Rüdiger L. Urbanke,et al.  Polar Codes for Channel and Source Coding , 2009, ArXiv.

[23]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[24]  Mehrdad Valipour,et al.  On Probabilistic Weight Distribution of Polar Codes , 2013, IEEE Communications Letters.

[25]  Yu-Chih Huang,et al.  Interleaved Concatenations of Polar Codes With BCH and Convolutional Codes , 2016, IEEE Journal on Selected Areas in Communications.

[26]  Valerio Bioglio,et al.  Polar codes with internal edge permutations , 2018, 2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW).