Complete function collocation method for solving preliminary cable-stayed bridge pretension forces

A proposal for a numerical method based on the complete solution collocation method is presented to solve the cable-stayed bridge engineering structural problem. This complete function collocation method is presented from the viewpoint of calculating the pretension forces required for the final completed bridge structure, which is one of the most important and practical considerations in cable-stayed bridge design. The complete function collocation method is used to calculate stay cable forces by solving a set of partial differential equations. The study shows that this mesh-free collocation method can be used to solve practical structural engineering problems and provides an alternative to traditional finite element methods. A simple two-dimensional cable-stayed bridge is presented and is solved to illustrate this numerical method. Governing equations of deformation for a bridge structure are formulated in either Eulerian or Lagrangian coordinate systems according to the situation. Point loads due to sta...