Parsing Time: Learning to Interpret Time Expressions

We present a probabilistic approach for learning to interpret temporal phrases given only a corpus of utterances and the times they reference. While most approaches to the task have used regular expressions and similar linear pattern interpretation rules, the possibility of phrasal embedding and modification in time expressions motivates our use of a compositional grammar of time expressions. This grammar is used to construct a latent parse which evaluates to the time the phrase would represent, as a logical parse might evaluate to a concrete entity. In this way, we can employ a loosely supervised EM-style bootstrapping approach to learn these latent parses while capturing both syntactic uncertainty and pragmatic ambiguity in a probabilistic framework. We achieve an accuracy of 72% on an adapted TempEval-2 task -- comparable to state of the art systems.

[1]  Hans Reichenbach,et al.  Elements of symbolic logic , 1948 .

[2]  Anna Maria Di Sciullo,et al.  Natural Language Understanding , 2009, SoMeT.

[3]  James F. Allen,et al.  TRIPS and TRIOS System for TempEval-2: Extracting Temporal Information from Text , 2010, *SEMEVAL.

[4]  Cleo Condoravdi,et al.  NPI licensing in temporal clauses , 2010 .

[5]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[6]  Inderjeet Mani,et al.  Robust Temporal Processing of News , 2000, ACL.

[7]  Marie-Francine Moens,et al.  KUL: Recognition and Normalization of Temporal Expressions , 2010, SemEval@ACL.

[8]  Luke S. Zettlemoyer,et al.  Online Learning of Relaxed CCG Grammars for Parsing to Logical Form , 2007, EMNLP.

[9]  Raymond J. Mooney,et al.  Learning to Parse Database Queries Using Inductive Logic Programming , 1996, AAAI/IAAI, Vol. 2.

[10]  Ming-Wei Chang,et al.  Driving Semantic Parsing from the World’s Response , 2010, CoNLL.

[11]  Michael Gertz,et al.  HeidelTime: High Quality Rule-Based Extraction and Normalization of Temporal Expressions , 2010, *SEMEVAL.

[12]  David Chiang,et al.  Better k-best Parsing , 2005, IWPT.

[13]  Mark Steedman,et al.  Wide-Coverage Semantic Representations from a CCG Parser , 2004, COLING.

[14]  Kevin Knight,et al.  A Syntax-based Statistical Translation Model , 2001, ACL.

[15]  Dan Klein,et al.  Learning Dependency-Based Compositional Semantics , 2011, CL.

[16]  Rafael Muñoz,et al.  TERSEO: Temporal Expression Resolution System Applied to Event Ordering , 2003, TSD.

[17]  Glenn Carroll,et al.  Two Experiments on Learning Probabilistic Dependency Grammars from Corpora , 1992 .

[18]  Rohit J. Kate,et al.  Learning to Transform Natural to Formal Languages , 2005, AAAI.

[19]  Angel X. Chang,et al.  SUTime: A library for recognizing and normalizing time expressions , 2012, LREC.

[20]  James F. Allen An Interval-Based Representation of Temporal Knowledge , 1981, IJCAI.

[21]  James F. Allen Natural language understanding (2nd ed.) , 1995 .

[22]  Tommaso Caselli,et al.  SemEval-2010 Task 13: TempEval-2 , 2010, *SEMEVAL.

[23]  Mark Steedman,et al.  Temporal Ontology and Temporal Reference , 1988, CL.

[24]  Luke S. Zettlemoyer,et al.  Learning to Map Sentences to Logical Form: Structured Classification with Probabilistic Categorial Grammars , 2005, UAI.

[25]  Mark Steedman,et al.  Lexical Generalization in CCG Grammar Induction for Semantic Parsing , 2011, EMNLP.

[26]  Martin Kay,et al.  Syntactic Process , 1979, ACL.

[27]  E. Bach,et al.  An extension of classical transformational gram-mar , 1976 .

[28]  Beatrice Alex,et al.  Edinburgh-LTG: TempEval-2 System Description , 2010, *SEMEVAL.

[29]  Georgiana Puscasu A Framework for Temporal Resolution , 2004, LREC.

[30]  Dan Klein,et al.  Corpus-Based Induction of Syntactic Structure: Models of Dependency and Constituency , 2004, ACL.