Finite Sections of Random Jacobi Operators

This article is about a problem in the numerical analysis of random operators. We study a version of the finite section method for the approximate solution of equations $Ax=b$ in infinitely many variables, where $A$ is a random Jacobi (i.e., tridiagonal) operator. In other words, we approximately solve infinite second order difference equations with stochastic coefficients by reducing the infinite volume case to the (large) finite volume case via a particular truncation technique. For most of the paper we consider non-self-adjoint operators $A$, but we also comment on the self-adjoint case when simplifications occur.

[1]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[2]  M. Lindner,et al.  On the Spectra and Pseudospectra of a Class of Non-Self-Adjoint Random Matrices and Operators , 2011, 1107.0177.

[3]  Simon N. Chandler-Wilde,et al.  Limit Operators, Collective Compactness, and the Spectral Theory of Infinite Matrices , 2010, 1005.0166.

[4]  M. Lindner The finite section method and stable subsequences , 2010 .

[5]  M. Lindner,et al.  Eigenvalue problem meets Sierpinski triangle: computing the spectrum of a non-self-adjoint random operator , 2010, 1003.3946.

[6]  M. Lindner A note on the spectrum of bi-infinite bi-diagonal random matrices , 2009 .

[7]  M. Lindner Fredholm Theory and Stable Approximation of Band Operators and Their Generalisations , 2009 .

[8]  B. Silbermann,et al.  Banach algebras of structured matrix sequences , 2009 .

[9]  B. Silbermann,et al.  Finite Sections of Band-Dominated Operators: lp-Theory , 2008 .

[10]  M. Lindner,et al.  Sufficiency of Favard's condition for a class of band-dominated operators on the axis , 2008 .

[11]  S. Roch Finite sections of band-dominated operators , 2007 .

[12]  E. Davies,et al.  Linear Operators and their Spectra , 2007 .

[13]  Marko Lindner,et al.  Infinite Matrices and their Finite Sections: An Introduction to the Limit Operator Method , 2006 .

[14]  A. Zee,et al.  On the remarkable spectrum of a non-Hermitian random matrix model , 2002, math-ph/0204015.

[15]  Steffen Roch,et al.  Band-dominated operators with operator-valued coefficients, their Fredholm properties and finite sections , 2001 .

[16]  I. Goldsheid,et al.  Eigenvalue curves of asymmetric tridiagonal random matrices , 2000, math-ph/0011003.

[17]  Steffen Roch,et al.  C* - Algebras and Numerical Analysis , 2000 .

[18]  L. Trefethen,et al.  Spectra, pseudospectra, and localization for random bidiagonal matrices , 2000, cond-mat/0003514.

[19]  E. Davies Spectral properties of random non-self-adjoint matrices and operators , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  A. Böttcher,et al.  Introduction to Large Truncated Toeplitz Matrices , 1998 .

[21]  N. Hatano,et al.  Non-Hermitian Delocalization and Eigenfunctions , 1998, cond-mat/9805195.

[22]  A. Zee,et al.  Spectral curves of non-hermitian hamiltonians , 1997, cond-mat/9710040.

[23]  David R. Nelson,et al.  NON-HERMITIAN LOCALIZATION AND POPULATION BIOLOGY , 1997, cond-mat/9708071.

[24]  A. Zee,et al.  Non-Hermitian localization and delocalization. , 1997, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  N. Hatano,et al.  Vortex pinning and non-Hermitian quantum mechanics , 1997, cond-mat/9705290.

[26]  Nelson,et al.  Localization Transitions in Non-Hermitian Quantum Mechanics. , 1996, Physical review letters.

[27]  Steffen Roch,et al.  NON-STRONGLY CONVERGING APPROXIMATION METHODS , 1989 .

[28]  V. L. Sedov,et al.  Localized magnetic states in metals , 1982 .

[29]  Samuel D. Conte,et al.  Elementary Numerical Analysis , 1980 .

[30]  Samuel D. Conte,et al.  Elementary Numerical Analysis: An Algorithmic Approach , 1975 .

[31]  I. Gohberg,et al.  Convolution Equations and Projection Methods for Their Solution , 1974 .

[32]  G. Baxter A norm inequality for a “finite-section” Wiener-Hopf equation , 1963 .

[33]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[34]  M. Lindner FREDHOLMNESS AND INDEX OF OPERATORS IN THE WIENER ALGEBRA ARE INDEPENDENT OF THE UNDERLYING SPACE , 2008 .

[35]  B. Silbermann,et al.  The Finite Sections Approach to the Index Formula for Band-dominated Operators , 2008 .

[36]  B. Silbermann,et al.  Finite sections of band-dominated operators with almost periodic coefficients , 2006 .

[37]  E. Davies Spectral Bounds Using Higher-Order Numerical Ranges , 2005 .

[38]  L. Trefethen,et al.  Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .

[39]  V. Rabinovich,et al.  Fredholm Indices of Band-Dominated Operators , 2004 .

[40]  S. Roch Band-dominated operators on Lambda-p-spaces: Fredholm indices and finite sections , 2004 .

[41]  Steffen Roch,et al.  Limit Operators And Their Applications In Operator Theory , 2004 .

[42]  B. Silbermann,et al.  Algebras of Approximation Sequences: Finite Sections of Band-Dominated Operators , 2001 .

[43]  .. Here Spectral Theory of Pseudo-ergodic Operators , 2001 .

[44]  U. G. Kurbatov Functional Differential Operators and Equations , 1999 .

[45]  B. Silbermann,et al.  Fredholm theory and finite section method for band-dominated operators , 1998 .

[46]  Albrecht Böttcher,et al.  Spectral properties of banded Toeplitz matrices , 1987 .