Diffusion tensor quantification of the human midsagittal corpus callosum subdivisions across the lifespan

The midsagittal corpus callosum (CC) cross-sectional area subdivisions have been used as early and sensitive markers of human brain white matter connectivity, development, natural aging and disease. Despite the simplicity and conspicuity of the appearance of the CC on anatomical magnetic resonance imaging (MRI), the published quantitative MRI literature on its regional sex and age trajectories are contradictory. The availability of noninvasive quantitative methods to assess the CC regions across the human lifespan would help clarify its contribution to behavior and cognition. In this report, we extended the utility of a recently described semi-automated diffusion tensor imaging (DTI) tissue segmentation method to utilize the high orientation contrast of the CC on DTI. Using optimized DTI methods on a cohort of 121 right-handed children and adults aged 6-68 years, we examined the CC areas and corresponding DTI metrics of the different functionally specialized sectors of the CC. Both the area and fractional anisotropy metrics followed inverted U-shaped curves, while the mean and radial diffusivities followed U-curves reflecting white matter progressive and regressive myelination dynamics that continue into young adulthood.

[1]  B Horwitz,et al.  Corpus callosum atrophy is a possible indicator of region- and cell type-specific neuronal degeneration in Alzheimer disease: a magnetic resonance imaging analysis. , 1998, Archives of neurology.

[2]  Jens Frahm,et al.  Topography of the human corpus callosum revisited—Comprehensive fiber tractography using diffusion tensor magnetic resonance imaging , 2006, NeuroImage.

[3]  Lawrence R. Frank,et al.  Microstructural integrity of the corpus callosum linked with neuropsychological performance in adolescents , 2008, Brain and Cognition.

[4]  D. Parker,et al.  Analysis of partial volume effects in diffusion‐tensor MRI , 2001, Magnetic resonance in medicine.

[5]  J. Klein,et al.  Human Motor Corpus Callosum: Topography, Somatotopy, and Link between Microstructure and Function , 2007, The Journal of Neuroscience.

[6]  Jun Yoshino,et al.  Demyelination increases radial diffusivity in corpus callosum of mouse brain , 2005, NeuroImage.

[7]  T. Crow,et al.  The size and fibre composition of the corpus callosum with respect to gender and schizophrenia: a post-mortem study. , 1999, Brain : a journal of neurology.

[8]  Norman D. Cook,et al.  The Brain Code , 1986 .

[9]  P. Rakić,et al.  Development of the corpus callosum and cavum septi in man , 1968, The Journal of comparative neurology.

[10]  G Price,et al.  The corpus callosum in first episode schizophrenia: a diffusion tensor imaging study , 2005, Journal of Neurology, Neurosurgery & Psychiatry.

[11]  A. Scheibel,et al.  Fiber composition of the human corpus callosum , 1992, Brain Research.

[12]  L. Lemieux,et al.  Reliable callosal measurement: population normative data confirm sex-related differences. , 2003, AJNR. American journal of neuroradiology.

[13]  D. Pandya,et al.  The topographical distribution of interhemispheric projections in the corpus callosum of the rhesus monkey. , 1971, Brain research.

[14]  Edith V. Sullivan,et al.  Sex differences in corpus callosum size: relationship to age and intracranial size , 2001, Neurobiology of Aging.

[15]  S. F. Witelson Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study. , 1989, Brain : a journal of neurology.

[16]  Hangyi Jiang,et al.  Pediatric diffusion tensor imaging: Normal database and observation of the white matter maturation in early childhood , 2006, NeuroImage.

[17]  Paul M. Thompson,et al.  Sexual dimorphism of brain developmental trajectories during childhood and adolescence , 2007, NeuroImage.

[18]  James C. Gee,et al.  Corpus callosum morphology and ventricular size in chromosome 22q11.2 deletion syndrome , 2007, Brain Research.

[19]  Anna Rotarska-Jagiela,et al.  The corpus callosum in schizophrenia-volume and connectivity changes affect specific regions , 2008, NeuroImage.

[20]  K M Hasan,et al.  Corpus callosum diffusion anisotropy correlates with neuropsychological outcomes in twins disconcordant for traumatic brain injury. , 2006, AJNR. American journal of neuroradiology.

[21]  Bryon A. Mueller,et al.  The development of corpus callosum microstructure and associations with bimanual task performance in healthy adolescents , 2008, NeuroImage.

[22]  Suzanne E. Welcome,et al.  Mapping cortical change across the human life span , 2003, Nature Neuroscience.

[23]  B. J. Casey,et al.  Quantitative morphology of the corpus callosum in attention deficit hyperactivity disorder. , 1994, The American journal of psychiatry.

[24]  D. Head,et al.  Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: evidence from diffusion tensor imaging. , 2004, Cerebral cortex.

[25]  Joseph A Maldjian,et al.  Diffusion anisotropy in the corpus callosum. , 2002, AJNR. American journal of neuroradiology.

[26]  P. Matthews,et al.  Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis. , 2000, Brain : a journal of neurology.

[27]  M. Keshavan,et al.  Sex differences in brain maturation during childhood and adolescence. , 2001, Cerebral cortex.

[28]  J R Hesselink,et al.  MR imaging of the corpus callosum. , 1993, AJR. American journal of roentgenology.

[29]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.

[30]  E. Syková,et al.  Evolution of anisotropic diffusion in the developing rat corpus callosum. , 1997, Journal of neurophysiology.

[31]  Khader M Hasan,et al.  Development and organization of the human brain tissue compartments across the lifespan using diffusion tensor imaging , 2007, Neuroreport.

[32]  J M Fletcher,et al.  Interhemispheric transfer of visual, auditory, tactile, and visuomotor information in children with hydrocephalus and partial agenesis of the corpus callosum. , 1999, Journal of clinical and experimental neuropsychology.

[33]  R. Gorski,et al.  Sex differences in the corpus callosum of the living human being , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  D. Wahlsten,et al.  Sex Differences in the Human Corpus Callosum: Myth or Reality? , 1997, Neuroscience & Biobehavioral Reviews.

[35]  E. Sullivan,et al.  Corpus callosal microstructural integrity influences interhemispheric processing: a diffusion tensor imaging study. , 2005, Cerebral cortex.

[36]  Khader M Hasan,et al.  Computation of the fractional anisotropy and mean diffusivity maps without tensor decoding and diagonalization: Theoretical analysis and validation , 2003, Magnetic resonance in medicine.

[37]  M. Gazzaniga Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? , 2000, Brain : a journal of neurology.

[38]  Brian A Wandell,et al.  Temporal-callosal pathway diffusivity predicts phonological skills in children , 2007, Proceedings of the National Academy of Sciences.

[39]  G. Gamkrelidze,et al.  Developmental Changes in Diffusion Anisotropy Coincide with Immature Oligodendrocyte Progression and Maturation of Compound Action Potential , 2005, The Journal of Neuroscience.

[40]  G M Innocenti,et al.  Forms and measures of adult and developing human corpus callosum: Is there sexual dimorphism? , 1989, The Journal of comparative neurology.

[41]  Sterling C. Johnson,et al.  Corpus callosum surface area across the human adult life span: Effect of age and gender , 1994, Brain Research Bulletin.

[42]  S. F. Witelson The brain connection: the corpus callosum is larger in left-handers. , 1985, Science.

[43]  A Diffusion Tensor Imaging based semi-automated segmentation and subdivision of the human corpus callosum : correlation of anisotropy and callosal area and application to gender based differences , 2005 .

[44]  Oliver Ganslandt,et al.  Age-related degradation in the central nervous system: assessment with diffusion-tensor imaging and quantitative fiber tracking. , 2008, Radiology.

[45]  A. Pfefferbaum,et al.  Increased brain white matter diffusivity in normal adult aging: Relationship to anisotropy and partial voluming , 2003, Magnetic resonance in medicine.

[46]  Larry A. Kramer,et al.  Diffusion tensor imaging-based tissue segmentation: Validation and application to the developing child and adolescent brain , 2007, NeuroImage.

[47]  Roland G. Henry,et al.  Diffusion tensor imaging: serial quantitation of white matter tract maturity in premature newborns , 2004, NeuroImage.

[48]  K. Krishnan,et al.  Aging of the human corpus callosum: magnetic resonance imaging in normal volunteers. , 1991, The Journal of neuropsychiatry and clinical neurosciences.

[49]  J. Townsend,et al.  Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. , 2000, Radiology.

[50]  Lucie Hertz-Pannier,et al.  Assessment of the early organization and maturation of infants' cerebral white matter fiber bundles: A feasibility study using quantitative diffusion tensor imaging and tractography , 2006, NeuroImage.

[51]  Scott T. Grafton,et al.  Structural Organization of the Corpus Callosum Predicts the Extent and Impact of Cortical Activity in the Nondominant Hemisphere , 2008, The Journal of Neuroscience.

[52]  Tore Wentzel-Larsen,et al.  Reduced white matter connectivity in the corpus callosum of children with Tourette syndrome. , 2006, Journal of child psychology and psychiatry, and allied disciplines.

[53]  J TOMASCH,et al.  Size, distribution, and number of fibres in the human Corpus Callosum , 1954, The Anatomical record.

[54]  Jean-Luc Daire,et al.  Microstructural development of human brain assessed in utero by diffusion tensor imaging , 2006, Pediatric Radiology.

[55]  Robert T. Schultz,et al.  Corpus callosum in maltreated children with posttraumatic stress disorder: A diffusion tensor imaging study , 2008, Psychiatry Research: Neuroimaging.

[56]  Charles H. Goldsmith,et al.  The relationship of hand preference to anatomy of the corpus callosum in men , 1991, Brain Research.

[57]  A Capdevila,et al.  When does human brain development end? Evidence of corpus callosum growth up to adulthood , 1993, Annals of neurology.

[58]  J. Foong,et al.  Neuropathological abnormalities of the corpus callosum in schizophrenia: a diffusion tensor imaging study , 2000, Journal of neurology, neurosurgery, and psychiatry.

[59]  Erin D Bigler,et al.  Diffusion tensor imaging in the corpus callosum in children after moderate to severe traumatic brain injury. , 2006, Journal of neurotrauma.

[61]  K. Lim,et al.  Age‐related decline in brain white matter anisotropy measured with spatially corrected echo‐planar diffusion tensor imaging , 2000, Magnetic resonance in medicine.

[62]  Alan Peters,et al.  Aging and the myelinated fibers in prefrontal cortex and corpus callosum of the monkey , 2002, The Journal of comparative neurology.

[63]  Khader M Hasan,et al.  Reduced Anterior Corpus Callosum White Matter Integrity is Related to Increased Impulsivity and Reduced Discriminability in Cocaine-Dependent Subjects: Diffusion Tensor Imaging , 2005, Neuropsychopharmacology.

[64]  B. J. Casey,et al.  Anatomical MRI of the developing human brain: what have we learned? , 2001, Journal of the American Academy of Child and Adolescent Psychiatry.

[65]  Christos Davatzikos,et al.  A Framework for Callosal Fiber Distribution Analysis , 2002, NeuroImage.

[66]  Christian Beaulieu,et al.  Diffusion tensor imaging of neurodevelopment in children and young adults , 2005, NeuroImage.

[67]  C Davatzikos,et al.  Sex differences in anatomic measures of interhemispheric connectivity: correlations with cognition in women but not men. , 1998, Cerebral cortex.

[68]  M. Peters,et al.  The Parallel Brain: The Cognitive Neuroscience of the Corpus Callosum , 2004 .

[69]  Stanton A. Glantz,et al.  Primer of biostatistics : statistical software program version 6.0 , 1981 .

[70]  J. Shimony,et al.  Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging. , 2001, Radiology.

[71]  Khader M Hasan,et al.  Diffusion tensor quantification of the macrostructure and microstructure of human midsagittal corpus callosum across the lifespan , 2008, NMR in biomedicine.

[72]  Patrice Y. Simard,et al.  Time is of the essence: a conjecture that hemispheric specialization arises from interhemispheric conduction delay. , 1994, Cerebral cortex.

[73]  R. Rauch,et al.  Analysis of cross-sectional area measurements of the corpus callosum adjusted for brain size in male and female subjects from childhood to adulthood , 1994, Behavioural Brain Research.

[74]  Timothy Edward John Behrens,et al.  Discordant white matter N-acetylasparate and diffusion MRI measures suggest that chronic metabolic dysfunction contributes to axonal pathology in multiple sclerosis , 2007, NeuroImage.

[75]  Andrew L. Alexander,et al.  Diffusion tensor imaging of the corpus callosum in Autism , 2007, NeuroImage.

[76]  K. Yamashita,et al.  Development and aging of brain midline structures: assessment with MR imaging. , 1989, Radiology.

[77]  D. Kennedy,et al.  The human brain age 7-11 years: a volumetric analysis based on magnetic resonance images. , 1996, Cerebral cortex.

[78]  E. Ross,et al.  Topography of the Human Corpus Callosum , 1985, Journal of neuropathology and experimental neurology.

[79]  Haruyasu Yamada,et al.  Normal aging in the central nervous system: quantitative MR diffusion-tensor analysis , 2002, Neurobiology of Aging.

[80]  E. Sacanella,et al.  Atrophy of the corpus callosum in chronic alcoholism , 1997, Journal of the Neurological Sciences.

[81]  Paul M. Thompson,et al.  Positive correlations between corpus callosum thickness and intelligence , 2007, NeuroImage.

[82]  Martin Styner,et al.  Reduced relationship to cortical white matter volume revealed by tractography-based segmentation of the corpus callosum in young children with developmental delay. , 2006, The American journal of psychiatry.

[83]  N. Minshew,et al.  Development of the corpus callosum in childhood, adolescence and early adulthood. , 2002, Life sciences.

[84]  K. Hasan,et al.  Diffusion tensor fractional anisotropy of the normal‐appearing seven segments of the corpus callosum in healthy adults and relapsing‐remitting multiple sclerosis patients , 2005, Journal of magnetic resonance imaging : JMRI.

[85]  Alexander Leemans,et al.  Microstructural maturation of the human brain from childhood to adulthood , 2008, NeuroImage.

[86]  A. Pfefferbaum,et al.  Selective age-related degradation of anterior callosal fiber bundles quantified in vivo with fiber tracking. , 2006, Cerebral cortex.

[87]  Hao Huang,et al.  DTI tractography based parcellation of white matter: Application to the mid-sagittal morphology of corpus callosum , 2005, NeuroImage.

[88]  Nicolae Duta,et al.  Less developed corpus callosum in dyslexic subjects—a structural MRI study , 2002, Neuropsychologia.

[89]  Takayuki Obata,et al.  Age-related degeneration of corpus callosum measured with diffusion tensor imaging , 2006, NeuroImage.

[90]  Jagath C. Rajapakse,et al.  Regional MRI measurements of the corpus callosum: a methodological and developmental study , 1996, Brain and Development.

[91]  P. Rakić,et al.  Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[92]  Khader M Hasan,et al.  Focal Wallerian degeneration of the corpus callosum in large middle cerebral artery stroke: Serial diffusion tensor imaging , 2006, Journal of magnetic resonance imaging : JMRI.

[93]  David Bonekamp,et al.  Diffusion tensor imaging in children and adolescents: Reproducibility, hemispheric, and age-related differences , 2007, NeuroImage.

[94]  Brian Avants,et al.  Characterization of sexual dimorphism in the human corpus callosum , 2003, NeuroImage.

[95]  Scott A. Huettel,et al.  Diffusion tensor imaging of adult age differences in cerebral white matter: relation to response time , 2004, NeuroImage.

[96]  Richard B. Chambers,et al.  Primer of Biostatistics, 5th ed , 2002 .

[97]  Andrea Tacchino,et al.  Callosal Contributions to Simultaneous Bimanual Finger Movements , 2008, The Journal of Neuroscience.

[98]  René Westerhausen,et al.  Effects of handedness and gender on macro- and microstructure of the corpus callosum and its subregions: a combined high-resolution and diffusion-tensor MRI study. , 2004, Brain research. Cognitive brain research.

[99]  Jun Li,et al.  White matter tract integrity and intelligence in patients with mental retardation and healthy adults , 2008, NeuroImage.

[100]  B. C. Richardson,et al.  Human corpus callosum in aging and alzheimer's disease: a magnetic resonance imaging study , 1994, Neurobiology of Aging.

[101]  Stefan Skare,et al.  See Blockindiscussions, Blockinstats, Blockinand Blockinauthor Blockinprofiles Blockinfor Blockinthis Blockinpublication Extensive Blockinpiano Blockinpracticing Blockinhas Blockinregionally Specific Blockineffects Blockinon Blockinwhite Blockinmatter Blockindevelopment , 2022 .

[102]  Ronald A. Cohen,et al.  Diffusion tensor imaging of the corpus callosum: a cross-sectional study across the lifespan , 2007, International Journal of Developmental Neuroscience.

[103]  A. Dale,et al.  Age-related alterations in white matter microstructure measured by diffusion tensor imaging , 2005, Neurobiology of Aging.

[104]  C. Beaulieu,et al.  The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.

[105]  Adolf Pfefferbaum,et al.  Diffusion tensor imaging with quantitative fibre tracking in HIV infection and alcoholism comorbidity: synergistic white matter damage. , 2006, Brain : a journal of neurology.

[106]  A. Malhotra,et al.  Sex differences in frontal lobe white matter microstructure: a DTI study , 2003, Neuroreport.

[107]  D. Salat,et al.  Sex Differences in the Corpus Callosum With Aging , 1997, Neurobiology of Aging.

[108]  G. Bartzokis,et al.  Heterogeneous age-related breakdown of white matter structural integrity: implications for cortical “disconnection” in aging and Alzheimer’s disease , 2004, Neurobiology of Aging.

[109]  L. Jäncke,et al.  The relation between forebrain volume and midsagittal size of the corpus callosum in children. , 1999, Neuroreport.

[110]  H S Levin,et al.  Reduction of corpus callosum growth after severe traumatic brain injury in children , 2000, Neurology.

[111]  Khader M Hasan,et al.  A framework for quality control and parameter optimization in diffusion tensor imaging: theoretical analysis and validation. , 2007, Magnetic resonance imaging.

[112]  V H Denenberg,et al.  A developmental study of sex and age interactions in the human corpus callosum. , 1992, Brain research. Developmental brain research.

[113]  Hae-Jeong Park,et al.  Sex differences in the human corpus callosum: diffusion tensor imaging study , 2005, Neuroreport.

[114]  Edith V. Sullivan,et al.  Equivalent disruption of regional white matter microstructure in ageing healthy men and women , 2001, Neuroreport.

[115]  Khader M Hasan,et al.  Retrospective measurement of the diffusion tensor eigenvalues from diffusion anisotropy and mean diffusivity in DTI , 2006, Magnetic resonance in medicine.

[116]  R. Kikinis,et al.  Magnetic resonance imaging shows orientation and asymmetry of white matter fiber tracts , 1998, Brain Research.

[117]  Heidi Johansen-Berg,et al.  Functional anatomy of interhemispheric cortical connections in the human brain , 2006, Journal of anatomy.