Pulse contrast measurement of femtosecond lasers using chalcohalide glass

A chalcogenide glass was used for an optical Kerr gate to sampling pulse contrast of femtosecond lasers with low repetition rate ( 40 Hz). The dynamic range of this method reached 103, with a scanning range of 150ps and temporal sampling rate of 6.3 fs. The advantage of this method lies in its broad spectrum range including visible and NIR spectral region and easy operation.

[1]  P. Georges,et al.  Single shot measurement of the optical Kerr effect kinetics. , 1988, Applied Optics.

[2]  S. Watanabe,et al.  Single-shot measurement of subpicosecond KrF pulse width by three-photon fluorescence of the XeF visible transition. , 1988, Optics letters.

[3]  H. Xia,et al.  Enhanced third-order nonlinear optical properties of C60-silane compounds , 2002 .

[4]  I. Ross,et al.  High dynamic range measurement of temporal shape and contrast of ultrashort UV pulses , 1999 .

[5]  A. Tünnermann,et al.  Single-shot autocorrelator for KrF subpicosecond pulses based on two-photon fluorescence of cadmium vapor at lambda = 508 nm. , 1991, Optics letters.

[6]  R. Dändliker,et al.  Method for measurement the shape asymmetry of picosecond light pulses , 1968 .

[7]  P. Heist,et al.  Measurement of ultraviolet femtosecond pulses using the optical kerr effect , 1992 .

[8]  Takashi Kurihara,et al.  Highly efficient ultrafast optical Kerr shutters with the use of organic nonlinear materials , 1994 .

[9]  D. Linde,et al.  Measurement of intense ultraviolet subpicosecond pulses using degenerate four-wave mixing , 1989 .

[10]  M. A. Duguay,et al.  Ultrahigh-speed photography of picosecond light pulses , 1971 .

[11]  Vladimir Chvykov,et al.  Generation of 10 11 contrast 50 TW laser pulses , 2006 .

[12]  L. Y. Chen,et al.  Linear and ultrafast nonlinear optical response of Ag:Bi2O3 composite films , 2003 .

[13]  Q. Gong,et al.  Third- and second-order optical nonlinearity of Ge–Ga–S–PbI2 chalcohalide glasses , 2007 .

[14]  H. Albrecht,et al.  Single-shot measurement of ultraviolet and visible femtosecond pulses using the optical Kerr effect. , 1993, Applied optics.

[15]  G. Corradi,et al.  On a possibility of analysing the temporal characteristics of short light pulses , 1977 .

[16]  J. Jethwa,et al.  A single‐shot autocorrelator for the ultraviolet with a variable time window , 1990 .

[17]  Xiujian Zhao,et al.  Synthesis and properties of GeS2–Ga2S3–PbI2 chalcohalide glasses , 2007 .

[18]  G Szabo,et al.  Femtosecond single-shot phase-sensitive autocorrelator for the ultraviolet. , 1991, Optics letters.

[19]  Qing Yang,et al.  Polarization dependence of optical Kerr effect in metallophthalocyanine-doped inorganic–organic hybrid materials , 2009 .

[20]  Chi‐Kuang Sun,et al.  Triple-optical autocorrelation for direct optical pulse-shape measurement , 2002 .

[21]  Gerard Mourou,et al.  Generation and characterization of the highest laser intensities (1022 W/cm2) , 2004, CLEO 2004.

[22]  P. Georges,et al.  Single-shot measurement of a 52-fs pulse. , 1987, Applied optics.

[23]  J. M. Kim,et al.  Effects of nanosecond-duration laser prepulses on solid targets , 2005 .

[24]  L. Dahlström,et al.  Third-order correlation measurement of ultrashort light pulses , 1971 .