pseudoMap: an innovative and comprehensive resource for identification of siRNA-mediated mechanisms in human transcribed pseudogenes

RNA interference (RNAi) is a gene silencing process within living cells, which is controlled by the RNA-induced silencing complex with a sequence-specific manner. In flies and mice, the pseudogene transcripts can be processed into short interfering RNAs (siRNAs) that regulate protein-coding genes through the RNAi pathway. Following these findings, we construct an innovative and comprehensive database to elucidate siRNA-mediated mechanism in human transcribed pseudogenes (TPGs). To investigate TPG producing siRNAs that regulate protein-coding genes, we mapped the TPGs to small RNAs (sRNAs) that were supported by publicly deep sequencing data from various sRNA libraries and constructed the TPG-derived siRNA-target interactions. In addition, we also presented that TPGs can act as a target for miRNAs that actually regulate the parental gene. To enable the systematic compilation and updating of these results and additional information, we have developed a database, pseudoMap, capturing various types of information, including sequence data, TPG and cognate annotation, deep sequencing data, RNA-folding structure, gene expression profiles, miRNA annotation and target prediction. As our knowledge, pseudoMap is the first database to demonstrate two mechanisms of human TPGs: encoding siRNAs and decoying miRNAs that target the parental gene. pseudoMap is freely accessible at http://pseudomap.mbc.nctu.edu.tw/. Database URL: http://pseudomap.mbc.nctu.edu.tw/

[1]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[2]  Oliver H. Tam,et al.  Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes , 2008, Nature.

[3]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[4]  Ana Kozomara,et al.  miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..

[5]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[6]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[7]  Melissa D. Lehti-Shiu,et al.  Evolutionary and Expression Signatures of Pseudogenes in Arabidopsis and Rice1[C][W][OA] , 2009, Plant Physiology.

[8]  Jan Krüger,et al.  RNAhybrid: microRNA target prediction easy, fast and flexible , 2006, Nucleic Acids Res..

[9]  M. Gerstein,et al.  Comparative analysis of processed ribosomal protein pseudogenes in four mammalian genomes , 2009, Genome Biology.

[10]  Li Lin,et al.  Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. , 2011, Cancer cell.

[11]  M. O'Shea,et al.  Neuronal Expression of Neural Nitric Oxide Synthase (nNOS) Protein Is Suppressed by an Antisense RNA Transcribed from an NOS Pseudogene , 1999, The Journal of Neuroscience.

[12]  Annie P. Chiang,et al.  Genome‐wide identification of pseudogenes capable of disease‐causing gene conversion , 2006, Human mutation.

[13]  Gene W. Yeo,et al.  Divergent Transcription from Active Promoters , 2008, Science.

[14]  Ron Edgar,et al.  Gene Expression Omnibus ( GEO ) : Microarray data storage , submission , retrieval , and analysis , 2008 .

[15]  Boris Lenhard,et al.  RNAdb 2.0—an expanded database of mammalian non-coding RNAs , 2006, Nucleic Acids Res..

[16]  M. Gerstein,et al.  Transcribed processed pseudogenes in the human genome: an intermediate form of expressed retrosequence lacking protein-coding ability , 2005, Nucleic acids research.

[17]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[18]  N. Macmichael,et al.  Notes , 1947, Edinburgh Medical Journal.

[19]  N. Vinckenbosch,et al.  Evolutionary fate of retroposed gene copies in the human genome. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Sean R. Eddy,et al.  Rfam: annotating non-coding RNAs in complete genomes , 2004, Nucleic Acids Res..

[21]  A. Riggs,et al.  Determinator-inhibitor pairs as a mechanism for threshold setting in development: a possible function for pseudogenes. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[22]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[23]  P. Harrison,et al.  Assessing the genomic evidence for conserved transcribed pseudogenes under selection , 2009, BMC Genomics.

[24]  D. Bartel,et al.  The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs , 2008, Nature.

[25]  Y. Sakaki,et al.  Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes , 2008, Nature.

[26]  Kanako O. Koyanagi,et al.  Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones , 2004, PLoS Biology.

[27]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[28]  Michael O'Shea,et al.  Evolution of nitric oxide synthase regulatory genes by DNA inversion. , 2002, Molecular biology and evolution.

[29]  Mouchiroud Dominique,et al.  HOPPSIGEN: a database of human and mouse processed pseudogenes , 2004, Nucleic Acids Research.

[30]  R. Nicholls,et al.  The putatively functional Mkrn1-p1 pseudogene is neither expressed nor imprinted, nor does it regulate its source gene in trans , 2006, Proceedings of the National Academy of Sciences.

[31]  Shwu-Fan Ma,et al.  A transcribed pseudogene of MYLK promotes cell proliferation , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[32]  Hongmin Li,et al.  A Precisely Regulated Gene Expression Cassette Potently Modulates Metastasis and Survival in Multiple Solid Cancers , 2008, PLoS genetics.

[33]  Mauno Vihinen,et al.  PseudoGeneQuest – Service for identification of different pseudogene types in the human genome , 2008, BMC Bioinformatics.

[34]  Kiyoshi Asai,et al.  The Functional RNA Database 3.0: databases to support mining and annotation of functional RNAs , 2008, Nucleic Acids Res..

[35]  Zhan Yu,et al.  Frame disruptions in human mRNA transcripts, and their relationship with splicing and protein structures , 2007, BMC Genomics.

[36]  Yi-Hsuan Chen,et al.  miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes , 2007, Nucleic Acids Res..

[37]  S. Batalov,et al.  A gene atlas of the mouse and human protein-encoding transcriptomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Mark Gerstein,et al.  Integrated pseudogene annotation for human chromosome 22: evidence for transcription. , 2005, Journal of molecular biology.

[39]  P. Pandolfi,et al.  A coding-independent function of gene and pseudogene mRNAs regulates tumour biology , 2010, Nature.

[40]  Adel Khelifi,et al.  HOPPSIGEN: a database of human and mouse processed pseudogenes , 2005, Nucleic Acids Res..

[41]  P. Hevezi,et al.  Gene expression analyses reveal molecular relationships among 20 regions of the human CNS , 2006, Neurogenetics.

[42]  Jian-Dong Huang,et al.  Efficient and seamless DNA recombineering using a thymidylate synthase A selection system in Escherichia coli , 2005, Nucleic acids research.

[43]  Gautier Koscielny,et al.  Ensembl 2012 , 2011, Nucleic Acids Res..

[44]  N. Perrimon,et al.  An endogenous small interfering RNA pathway in Drosophila , 2008, Nature.

[45]  John J. Rossi,et al.  Strategies for silencing human disease using RNA interference , 2007, Nature Reviews Genetics.

[46]  Tsippi Iny Stein,et al.  In-silico human genomics with GeneCards , 2011, Human Genomics.

[47]  A. Mighell,et al.  Vertebrate pseudogenes , 2000, FEBS letters.

[48]  Mark Gerstein,et al.  Pseudogene.org: a comprehensive database and comparison platform for pseudogene annotation , 2006, Nucleic Acids Res..

[49]  Fred H. Gage,et al.  Alternative Splicing Events Identified in Human Embryonic Stem Cells and Neural Progenitors , 2007, PLoS Comput. Biol..

[50]  Ryan D. Morin,et al.  Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. , 2008, Genome research.

[51]  Taishin Kin,et al.  Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells , 2008, Nature.

[52]  Tao Liu,et al.  NONCODE v2.0: decoding the non-coding , 2007, Nucleic Acids Res..

[53]  Laurent Lestrade,et al.  snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs , 2005, Nucleic Acids Res..

[54]  Atsushi Yoshiki,et al.  An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene , 2003, Nature.

[55]  M. Kimmel,et al.  Conflict of interest statement. None declared. , 2010 .

[56]  Philipp Kapranov,et al.  Pseudogenes in the ENCODE regions: consensus annotation, analysis of transcription, and evolution. , 2007, Genome research.

[57]  S. Salzberg,et al.  The Transcriptional Landscape of the Mammalian Genome , 2005, Science.

[58]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[59]  Z. Weng,et al.  Endogenous siRNAs Derived from Transposons and mRNAs in Drosophila Somatic Cells , 2008, Science.