CHARACTERISTICS OF PLANETARY CANDIDATES OBSERVED BY KEPLER. II. ANALYSIS OF THE FIRST FOUR MONTHS OF DATA

On 2011 February 1 the Kepler mission released data for 156,453 stars observed from the beginning of the science observations on 2009 May 2 through September 16. There are 1235 planetary candidates with transit-like signatures detected in this period. These are associated with 997 host stars. Distributions of the characteristics of the planetary candidates are separated into five class sizes: 68 candidates of approximately Earth-size (R_p < 1.25 R_⊕), 288 super-Earth-size (1.25 R_⊕ ≤ R_p < 2 R_⊕), 662 Neptune-size (2 R_⊕ ≤ R_p < 6 R_⊕), 165 Jupiter-size (6 R_⊕ ≤ R_p < 15 R_⊕), and 19 up to twice the size of Jupiter (15 R_⊕ ≤ R_p < 22 R_⊕). In the temperature range appropriate for the habitable zone, 54 candidates are found with sizes ranging from Earth-size to larger than that of Jupiter. Six are less than twice the size of the Earth. Over 74% of the planetary candidates are smaller than Neptune. The observed number versus size distribution of planetary candidates increases to a peak at two to three times the Earth-size and then declines inversely proportional to the area of the candidate. Our current best estimates of the intrinsic frequencies of planetary candidates, after correcting for geometric and sensitivity biases, are 5% for Earth-size candidates, 8% for super-Earth-size candidates, 18% for Neptune-size candidates, 2% for Jupiter-size candidates, and 0.1% for very large candidates; a total of 0.34 candidates per star. Multi-candidate, transiting systems are frequent; 17% of the host stars have multi-candidate systems, and 34% of all the candidates are part of multi-candidate systems.

[1]  J. Kasting,et al.  Habitable zones around main sequence stars. , 1993, Icarus.

[2]  The Goldilocks Problem: Climatic Evolution and Long-Term Habitability of Terrestrial Planets , 1994 .

[3]  James F. Kasting,et al.  HABITABLE ZONES AROUND LOW MASS STARS AND THE SEARCH FOR EXTRATERRESTRIAL LIFE , 1997, Origins of life and evolution of the biosphere.

[4]  Jon M. Jenkins,et al.  The Impact of Solar-like Variability on the Detectability of Transiting Terrestrial Planets , 2002 .

[5]  Manoj Joshi,et al.  Climate model studies of synchronously rotating planets. , 2003, Astrobiology.

[6]  R. Drimmel,et al.  A three-dimensional Galactic extinction model , 2003, astro-ph/0307273.

[7]  J. Pepper,et al.  Sensitivity of Transit Searches to Habitable-Zone Planets , 2002, astro-ph/0211547.

[8]  J. Jenkins,et al.  Detecting Reflected Light from Close-in Extrasolar Giant Planets with the Kepler Photometer , 2003, astro-ph/0305473.

[9]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[10]  The unsolved universe: challenges for the future , 2003 .

[11]  UNSOLVED UNIVERSE: CHALLENGES FOR THE FUTURE , 2003 .

[12]  N. Santos,et al.  Extra-Solar Planets: Clues to the Planetary Formation Mechanisms , 2003 .

[13]  E. Agol,et al.  On detecting terrestrial planets with timing of giant planet transits , 2004 .

[14]  Robert M. Haberle,et al.  Habitability of Planets Around Red Dwarf Stars , 1999, Origins of life and evolution of the biosphere.

[15]  Victoria Meadows,et al.  Biosignatures from Earth-like planets around M dwarfs. , 2005, Astrobiology.

[16]  Matthew J. Holman,et al.  The Use of Transit Timing to Detect Terrestrial-Mass Extrasolar Planets , 2005, Science.

[17]  Sara Seager,et al.  On the Period Distribution of Close-in Extrasolar Giant Planets , 2005 .

[18]  David Charbonneau,et al.  TrES-2: The First Transiting Planet in the Kepler Field , 2006, astro-ph/0609335.

[19]  Drake Deming,et al.  A reappraisal of the habitability of planets around M dwarf stars. , 2006, Astrobiology.

[20]  Department of Physics,et al.  HAT-P-7b: An Extremely Hot Massive Planet Transiting a Bright Star in the Kepler Field , 2008, 0803.0746.

[21]  D. A. Caldwell,et al.  INITIAL CHARACTERISTICS OF KEPLER SHORT CADENCE DATA , 2009, 1001.0142.

[22]  David G. Monet,et al.  KEPLER-7b: A TRANSITING PLANET WITH UNUSUALLY LOW DENSITY , 2009, 1001.0190.

[23]  W. D. Cochran,et al.  Kepler’s Optical Phase Curve of the Exoplanet HAT-P-7b , 2009, Science.

[24]  Russel J. White,et al.  A SURVEY OF STELLAR FAMILIES: MULTIPLICITY OF SOLAR-TYPE STARS , 2009, 1007.0414.

[25]  John Asher Johnson,et al.  TEN NEW AND UPDATED MULTIPLANET SYSTEMS AND A SURVEY OF EXOPLANETARY SYSTEMS , 2008, 0812.1582.

[26]  Howard Isaacson,et al.  MODELING KEPLER TRANSIT LIGHT CURVES AS FALSE POSITIVES: REJECTION OF BLEND SCENARIOS FOR KEPLER-9, AND VALIDATION OF KEPLER-9 d, A SUPER-EARTH-SIZE PLANET IN A MULTIPLE SYSTEM , 2010, 1008.4393.

[27]  Jie Li,et al.  Data validation in the Kepler Science Operations Center pipeline , 2010, Astronomical Telescopes + Instrumentation.

[28]  F. Fressin,et al.  CHARACTERISTICS OF KEPLER PLANETARY CANDIDATES BASED ON THE FIRST DATA SET , 2010, 1006.2799.

[29]  John C. Geary,et al.  INSTRUMENT PERFORMANCE IN KEPLER's FIRST MONTHS , 2010, 1001.0216.

[30]  Howard Isaacson,et al.  The Occurrence and Mass Distribution of Close-in Super-Earths, Neptunes, and Jupiters , 2010, Science.

[31]  Jie Li,et al.  Transiting planet search in the Kepler pipeline , 2010, Astronomical Telescopes + Instrumentation.

[32]  M. Endl,et al.  KEPLER-6b: A TRANSITING HOT JUPITER ORBITING A METAL-RICH STAR , 2010, 1001.0333.

[33]  Howard Isaacson,et al.  DISCOVERY AND ROSSITER–McLAUGHLIN EFFECT OF EXOPLANET KEPLER-8b , 2010, 1001.0416.

[34]  M. R. Haas,et al.  INITIAL CHARACTERISTICS OF KEPLER LONG CADENCE DATA FOR DETECTING TRANSITING PLANETS , 2010, 1001.0256.

[35]  M. R. Haas,et al.  OVERVIEW OF THE KEPLER SCIENCE PROCESSING PIPELINE , 2010, 1001.0258.

[36]  Howard Isaacson,et al.  The Kepler Follow-up Observation Program , 2010 .

[37]  UC Berkeley,et al.  HAT-P-11b: A SUPER-NEPTUNE PLANET TRANSITING A BRIGHT K STAR IN THE KEPLER FIELD , 2009, 0901.0282.

[38]  F. Fressin,et al.  FIVE KEPLER TARGET STARS THAT SHOW MULTIPLE TRANSITING EXOPLANET CANDIDATES , 2010, 1006.2763.

[39]  T. Owen,et al.  KEPLER MISSION DESIGN, REALIZED PHOTOMETRIC PERFORMANCE, AND EARLY SCIENCE , 2010, 1001.0268.

[40]  A. Prsa,et al.  PRE-SPECTROSCOPIC FALSE-POSITIVE ELIMINATION OF KEPLER PLANET CANDIDATES , 2010, 1001.0392.

[41]  Sara Seager,et al.  KEPLER ECLIPSING BINARY STARS. I. CATALOG AND PRINCIPAL CHARACTERIZATION OF 1879 ECLIPSING BINARIES IN THE FIRST DATA RELEASE , 2010, 1006.2815.

[42]  John C. Geary,et al.  KEPLER-4b: A HOT NEPTUNE-LIKE PLANET OF A G0 STAR NEAR MAIN-SEQUENCE TURNOFF , 2010, 1001.0604.

[43]  John C. Geary,et al.  DISCOVERY OF THE TRANSITING PLANET KEPLER-5b , 2010, 1001.0913.

[44]  Howard Isaacson,et al.  Kepler-9: A System of Multiple Planets Transiting a Sun-Like Star, Confirmed by Timing Variations , 2010, Science.

[45]  D. A. Caldwell,et al.  SELECTION, PRIORITIZATION, AND CHARACTERISTICS OF KEPLER TARGET STARS , 2010, 1001.0349.

[46]  Austin,et al.  KEPLER'S FIRST ROCKY PLANET: KEPLER-10b , 2011, 1102.0605.

[47]  E. Ford,et al.  A FIRST COMPARISON OF KEPLER PLANET CANDIDATES IN SINGLE AND MULTIPLE SYSTEMS , 2011, 1103.3896.

[48]  A. Sicilia-Aguilar,et al.  THE TRANSITIONAL PROTOPLANETARY DISK FREQUENCY AS A FUNCTION OF AGE: DISK EVOLUTION IN THE CORONET CLUSTER, TAURUS, AND OTHER 1–8 Myr OLD REGIONS , 2011, 1102.4364.

[49]  John Asher Johnson,et al.  ON THE LOW FALSE POSITIVE PROBABILITIES OF KEPLER PLANET CANDIDATES , 2011, 1101.5630.

[50]  M. R. Haas,et al.  A closely packed system of low-mass, low-density planets transiting Kepler-11 , 2011, Nature.

[51]  Jon M. Jenkins,et al.  ARCHITECTURE AND DYNAMICS OF KEPLER'S CANDIDATE MULTIPLE TRANSITING PLANET SYSTEMS , 2011, 1102.0543.