Block jacobi preconditioning of the conjugate gradient method on a vector processor
暂无分享,去创建一个
[1] Roland W. Freund,et al. An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..
[2] T. Manteuffel,et al. A taxonomy for conjugate gradient methods , 1990 .
[3] Roland W. Freund,et al. A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..
[4] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[5] T. Manteuffel,et al. Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method , 1984 .
[6] Kang C. Jea,et al. Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods , 1980 .
[7] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[8] Gene H. Golub,et al. Matrix computations , 1983 .
[9] Michael Metcalf,et al. Effective FORTRAN 77 , 1985 .
[10] Dennis C. Smolarski,et al. Implementation of an adaptive algorithm for Richardson's method , 1991 .
[11] Michael Metcalf,et al. FORTRAN optimization , 1982 .
[12] Kang C. Jea,et al. On the simplification of generalized conjugate-gradient methods for nonsymmetrizable linear systems , 1983 .
[13] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[14] Louis A. Hageman,et al. Iterative Solution of Large Linear Systems. , 1971 .
[15] John M. Levesque,et al. A guidebook to Fortran on supercomputers , 1989 .
[16] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[17] T. Manteuffel. An incomplete factorization technique for positive definite linear systems , 1980 .
[18] J. Ortega. Introduction to Parallel and Vector Solution of Linear Systems , 1988, Frontiers of Computer Science.
[19] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[20] W. Joubert,et al. Necessary and sufficient conditions for the simplification of generalized conjugate-gradient algorithms , 1987 .
[21] G. Golub,et al. Iterative solution of linear systems , 1991, Acta Numerica.