Key Principles in Glioblastoma Therapy

Bartek Jiri Jr.1, Kimberly Ng2, Bartek Jiri Sr.3, Santosh Kesari4, Bob Carter5 and Clark C. Chen1,6 1Department of Neurosurgery, Karolinska University Hospital, Stockholm 2Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 3Institute of Cancer Biology and Centre for Genotoxic Stress Research Danish Cancer Society, Copenhagen 4Department of Neurology, Moores Cancer Center, UCSD, San Diego, CA 5Center for Theoretical and Applied Neurosurgery, UCSD, San Diego, CA 6Division of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA 1Sweden 2,4,5,6USA 3Denmark

[1]  K. Aboody,et al.  Concise Review: Stem Cells As an Emerging Platform for Antibody Therapy of Cancer , 2010, Stem cells.

[2]  A. Jemal,et al.  Cancer Statistics, 2010 , 2010, CA: a cancer journal for clinicians.

[3]  L. Chin,et al.  Targeting EGFR Induced Oxidative Stress by PARP1 Inhibition in Glioblastoma Therapy , 2010, PloS one.

[4]  J. Kuo,et al.  The cancer stem cell paradigm: a new understanding of tumor development and treatment , 2010, Expert opinion on therapeutic targets.

[5]  R. McLendon,et al.  Integrin alpha 6 regulates glioblastoma stem cells. , 2010, Cell stem cell.

[6]  Serban Nacu,et al.  A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. , 2010, Cancer cell.

[7]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[8]  S. Horvath,et al.  EGFR Signaling Through an Akt-SREBP-1–Dependent, Rapamycin-Resistant Pathway Sensitizes Glioblastomas to Antilipogenic Therapy , 2009, Science Signaling.

[9]  C. Brennan,et al.  Glioblastoma Subclasses Can Be Defined by Activity among Signal Transduction Pathways and Associated Genomic Alterations , 2009, PloS one.

[10]  Paul S Mischel,et al.  The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis , 2009, Proceedings of the National Academy of Sciences.

[11]  Michael J. Emanuele,et al.  A Genome-wide RNAi Screen Identifies Multiple Synthetic Lethal Interactions with the Ras Oncogene , 2009, Cell.

[12]  Austin G Smith,et al.  CD133 (Prominin) Negative Human Neural Stem Cells Are Clonogenic and Tripotent , 2009, PloS one.

[13]  H. Fine,et al.  SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. , 2009, Cell stem cell.

[14]  M. Stratton,et al.  The cancer genome , 2009, Nature.

[15]  Ji Luo,et al.  Principles of Cancer Therapy: Oncogene and Non-oncogene Addiction , 2009, Cell.

[16]  Arturo Alvarez-Buylla,et al.  Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. , 2009, Cancer cell.

[17]  Anna M. Krichevsky,et al.  miR-21: a small multi-faceted RNA , 2008, Journal of cellular and molecular medicine.

[18]  D. Busam,et al.  An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2008, Science.

[19]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[20]  R. McLendon,et al.  Targeting cancer stem cells through L1CAM suppresses glioma growth. , 2008, Cancer research.

[21]  Santosh Kesari,et al.  Malignant gliomas in adults. , 2008, The New England journal of medicine.

[22]  Jian Wang,et al.  CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells , 2008, International journal of cancer.

[23]  Peter Canoll,et al.  Identification of A2B5+CD133- tumor-initiating cells in adult human gliomas. , 2008, Neurosurgery.

[24]  Yuri Kotliarov,et al.  Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. , 2008, Cancer cell.

[25]  Sreenath V. Sharma,et al.  Oncogene addiction: setting the stage for molecularly targeted cancer therapy. , 2007, Genes & development.

[26]  Keith L. Ligon,et al.  Coactivation of Receptor Tyrosine Kinases Affects the Response of Tumor Cells to Targeted Therapies , 2007, Science.

[27]  B. Scheithauer,et al.  The 2007 WHO classification of tumours of the central nervous system , 2007, Acta Neuropathologica.

[28]  C. Der,et al.  Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer , 2007, Oncogene.

[29]  E. Birney,et al.  Patterns of somatic mutation in human cancer genomes , 2007, Nature.

[30]  D. Louis WHO classification of tumours of the central nervous system , 2007 .

[31]  Mark W. Dewhirst,et al.  Glioma stem cells promote radioresistance by preferential activation of the DNA damage response , 2006, Nature.

[32]  Thomas D. Wu,et al.  Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. , 2006, Cancer cell.

[33]  Koji Yoshimoto,et al.  Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. , 2005, The New England journal of medicine.

[34]  W. Kaelin The Concept of Synthetic Lethality in the Context of Anticancer Therapy , 2005, Nature Reviews Cancer.

[35]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[36]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[37]  B. Druker Inhibition of the Bcr-Abl tyrosine kinase as a therapeutic strategy for CML , 2002, Oncogene.

[38]  D. Steindler,et al.  Human cortical glial tumors contain neural stem‐like cells expressing astroglial and neuronal markers in vitro , 2002, Glia.

[39]  I. Weinstein Addiction to Oncogenes--the Achilles Heal of Cancer , 2002, Science.

[40]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[41]  D. Felsher,et al.  Reversible tumorigenesis by MYC in hematopoietic lineages. , 1999, Molecular cell.

[42]  L. Chin,et al.  Essential role for oncogenic Ras in tumour maintenance , 1999, Nature.

[43]  D. Felsher,et al.  Transient excess of MYC activity can elicit genomic instability and tumorigenesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[44]  K. Yokoyama,et al.  Transcriptional control of the endogenous MYC protooncogene by antisense RNA. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[45]  E. Alexander,et al.  Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. , 1978, Journal of neurosurgery.