Robust and optimal multi-iterative techniques for IgA Galerkin linear systems This is a preprint of a paper published in Comput. Methods Appl. Mech. Engrg. 284 (2015) 230264.

We consider fast solvers for large linear systems arising from the Galerkin approximation based on B-splines of classical d-dimensional elliptic problems, d ≥ 1, in the context of isogeometric analysis. Our ultimate goal is to design iterative algorithms with the following two properties. First, their computational cost is optimal, that is linear with respect to the number of degrees of freedom, i.e. the resulting matrix size. Second, they are totally robust, i.e., their convergence speed is substantially independent of all the relevant parameters: in our case, these are the matrix size (related to the fineness parameter), the spline degree (associated to the approximation order), and the dimensionality d of the problem. We review several methods like PCG, multigrid, multiiterative algorithms, and we show how their numerical behavior (in terms of convergence speed) can be understood through the notion of spectral distribution, i.e., through a compact symbol which describes the global eigenvalue behavior of the considered stiffness matrices. As a final step, we show how we can design an optimal and totally robust multi-iterative method, by taking into account the analytic features of the symbol. A wide variety of numerical experiments, few open problems and perspectives are presented and critically discussed.

[1]  Giancarlo Sangalli,et al.  BPX-preconditioning for isogeometric analysis , 2013 .

[2]  Luca F. Pavarino,et al.  BDDC PRECONDITIONERS FOR ISOGEOMETRIC ANALYSIS , 2013 .

[3]  Eugene E. Tyrtyshnikov,et al.  COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: On the distribution of eigenvectors of Toeplitz matrices with weakened requirements on the generating function , 1997 .

[4]  Stefano Serra Capizzano,et al.  On the Regularizing Power of Multigrid-type Algorithms , 2005, SIAM J. Sci. Comput..

[5]  Marco Donatelli,et al.  A V-cycle Multigrid for multilevel matrix algebras: proof of optimality , 2007, Numerische Mathematik.

[6]  Paolo Tilli,et al.  A note on the spectral distribution of toeplitz matrices , 1998 .

[7]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[8]  Stefano Serra-Capizzano,et al.  Multigrid Methods for Multilevel Circulant Matrices , 2005 .

[9]  J. Kraus,et al.  Multigrid methods for isogeometric discretization , 2013, Computer methods in applied mechanics and engineering.

[10]  Stefano Serra Capizzano,et al.  On the Asymptotic Spectrum of Finite Element Matrix Sequences , 2007, SIAM J. Numer. Anal..

[11]  Estimates for the minimum eigenvalue and the condition number of Hermitian (block) Toeplitz matrices , 2013 .

[12]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[13]  Stefano Serra-Capizzano,et al.  The GLT class as a generalized Fourier analysis and applications , 2006 .

[14]  Giuseppe Fiorentino,et al.  Multigrid methods for indefinite Toeplitz matrices , 1996 .

[15]  Marco Donatelli,et al.  An algebraic generalization of local Fourier analysis for grid transfer operators in multigrid based on Toeplitz matrices , 2010, Numer. Linear Algebra Appl..

[16]  Luca F. Pavarino,et al.  Isogeometric Schwarz preconditioners for linear elasticity systems , 2013 .

[17]  S. Serra Capizzano,et al.  Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations , 2003 .

[18]  Hendrik Speleers,et al.  Spectral analysis of matrices in isogeometric collocation methods , 2014 .

[19]  O. Axelsson Iterative solution methods , 1995 .

[20]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[21]  Albrecht Böttcher,et al.  On the asymptotic behavior of the eigenvectors of large banded Toeplitz matrices , 2006 .

[22]  Stefano Serra Capizzano,et al.  Spectral Features and Asymptotic Properties for g-Circulants and g-Toeplitz Sequences , 2010, SIAM J. Matrix Anal. Appl..

[23]  S. Serra,et al.  Multi-iterative methods , 1993 .

[24]  J. Kraus,et al.  Algebraic multilevel preconditioning in isogeometric analysis: Construction and numerical studies , 2013, 1304.0403.

[25]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[26]  Stefano Serra Capizzano,et al.  An ergodic theorem for classes of preconditioned matrices , 1998 .

[27]  Marco Donatelli,et al.  Multigrid methods for Toeplitz linear systems with different size reduction , 2010, 1010.5730.

[28]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[29]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[30]  William F. Trench,et al.  Properties of unilevel block circulants , 2009 .

[31]  Hendrik Speleers,et al.  Symbol-Based Multigrid Methods for Galerkin B-Spline Isogeometric Analysis , 2017, SIAM J. Numer. Anal..

[32]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[33]  Stefano Serra Capizzano,et al.  Numerische Mathematik Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs Matrix-sequences , 2002 .

[34]  Bert Jüttler,et al.  IETI – Isogeometric Tearing and Interconnecting , 2012, Computer methods in applied mechanics and engineering.

[35]  L. Hörmander,et al.  Pseudo-differential Operators and Non-elliptic Boundary Problems , 1966 .

[36]  Stefano Serra Capizzano,et al.  V-cycle Optimal Convergence for Certain (Multilevel) Structured Linear Systems , 2004, SIAM J. Matrix Anal. Appl..

[37]  Stefano Serra,et al.  On the extreme eigenvalues of hermitian (block) toeplitz matrices , 1998 .

[38]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[39]  William F. Trench,et al.  Properties of multilevel block α̲-circulants , 2009 .

[40]  Hendrik Speleers,et al.  On the spectrum of stiffness matrices arising from isogeometric analysis , 2014, Numerische Mathematik.

[41]  Stefano Serra-Capizzano,et al.  ON THE ASYMPTOTIC SPECTRUM OF FINITE ELEMENT , 2007 .

[42]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[43]  Stefano Serra,et al.  Multigrid methods for toeplitz matrices , 1991 .

[44]  A. Böttcher,et al.  On the condition numbers of large semidefinite Toeplitz matrices , 1998 .