Calibrating interferometric synthetic aperture radar (InSAR) images with regional GPS network atmosphere models

SUMMARY Interferometric synthetic aperture radar (InSAR) technology provides a valuable tool for obtaining Earth surface deformation and topography at high spatial resolution for crustal deformation studies. Similar to global positioning system (GPS), InSAR measurements are affected by the Earth’s ionospheric and tropospheric layers as the electromagnetic signals significantly refract while propagating through the different layers. While GPS signals propagating through the neutral atmosphere are affected primarily by the distribution, pressure and temperature of atmospheric gases, including water vapour, the propagation through the ionosphere is mainly affectedbythenumberoffreeelectronsalongthesignalpath.Here,wepresenttheuseofdense regional GPS networks for extracting tropospheric zenith delays and ionospheric total electron content (TEC) maps in order to reduce the noise levels in InSAR images. The results show significant reduction in the root mean square (RMS) values when simultaneously combining the two corrections, both at short time periods where no surface deformation is expected, and at longer periods, where imaging of localized subsidence and fault creep is enhanced.

[1]  J. Zumberge,et al.  Precise point positioning for the efficient and robust analysis of GPS data from large networks , 1997 .

[2]  Paul A. Rosen,et al.  Transient strain accumulation and fault interaction in the eastern California shear zone , 2001 .

[3]  K. Feigl,et al.  Radar interferometry and its application to changes in the Earth's surface , 1998 .

[4]  K. Feigl,et al.  Radar interferometric mapping of deformation in the year after the Landers earthquake , 1994, Nature.

[5]  Bernard Minster,et al.  Deformation on Nearby Faults Induced by the 1999 Hector Mine Earthquake , 2002, Science.

[6]  Yehuda Bock,et al.  Integrated satellite interferometry: Tropospheric noise, GPS estimates and implications for interferometric synthetic aperture radar products , 1998 .

[7]  Attila Komjathy,et al.  Global ionospheric total electron content mapping using the global positioning system , 1997 .

[8]  H. Schuh,et al.  Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium‐Range Weather Forecasts operational analysis data , 2006 .

[9]  Haitao Wu,et al.  China Satellite Navigation Conference (CSNC 2021) Proceedings , 2021, Lecture Notes in Electrical Engineering.

[10]  K. Mattar,et al.  Reducing ionospheric electron density errors in satellite radar interferometry applications , 2002 .

[11]  Robert M. Nadeau,et al.  Distribution of aseismic slip rate on the Hayward fault inferred from seismic and geodetic data , 2005 .

[12]  Didier Massonnet,et al.  A method for the automatic characterization of InSAR atmospheric artifacts by correlation of multiple interferograms over the same site , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[13]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[14]  Manoochehr Shirzaei,et al.  Topography correlated atmospheric delay correction in radar interferometry using wavelet transforms , 2012 .

[15]  J. Klobuchar Ionospheric Effects on GPS , 2009 .

[16]  Marie-Pierre Doin,et al.  Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models , 2009 .

[17]  Heresh Fattahi,et al.  InSAR uncertainty due to orbital errors , 2014 .

[18]  M. Simons,et al.  A multiscale approach to estimating topographically correlated propagation delays in radar interferograms , 2010 .

[19]  Johannes Böhm,et al.  Geodetic and Atmospheric Background , 2013 .

[20]  Eric J. Fielding,et al.  Tropospheric correction for InSAR using interpolated ECMWF data and GPS Zenith Total Delay from the Southern California Integrated GPS Network , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[21]  T. Wright,et al.  Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite radar interferometry , 2001 .

[22]  Jordi J. Mallorquí,et al.  Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images , 2003, IEEE Trans. Geosci. Remote. Sens..

[23]  Michael B. Heflin,et al.  The effect of the second order GPS ionospheric correction on receiver positions , 2003 .

[24]  P. Georgiadou,et al.  On the effect of ionospheric delay on geodetic relative GPS positioning , 1988 .

[25]  U. Wegmuller,et al.  Ionospheric Electron Concentration Effects on SAR and INSAR , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[26]  Paul Wessel,et al.  Open radar interferometry software for mapping surface Deformation , 2011 .

[27]  Daniel R. Cayan,et al.  Precipitable Water from GPS Zenith Delays Using North American Regional Reanalysis Meteorology , 2013 .

[28]  Xiaoli Ding,et al.  Correcting atmospheric effects on InSAR with MERIS water vapour data and elevation‐dependent interpolation model , 2012 .

[29]  D. Sandwell,et al.  A model of the earthquake cycle along the San Andreas Fault System for the past 1000 years , 2006 .

[30]  Howard A. Zebker,et al.  Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models , 2002, IEEE Trans. Geosci. Remote. Sens..

[31]  Zhu Wenyao,et al.  Comparison and Consistency Research of Regional Ionospheric TEC Models Based on GPS Measurements , 2008 .

[32]  Christophe Delacourt,et al.  Tropospheric corrections of SAR interferograms with strong topography. Application to Etna , 1998 .

[33]  Marie-Pierre Doin,et al.  Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data , 2011 .

[34]  A. Leick GPS satellite surveying , 1990 .

[35]  Shuanggen Jin,et al.  M_DCB: Matlab code for estimating GNSS satellite and receiver differential code biases , 2012, GPS Solutions.

[36]  D. Sandwell,et al.  A three-dimensional semianalytic viscoelastic model for time-dependent analyses of the earthquake cycle , 2004 .

[37]  Juha Hyyppä,et al.  Spherical cap harmonic analysis of the Arctic ionospheric TEC for one solar cycle , 2014 .

[38]  P. Rosen,et al.  Measurement and mitigation of the ionosphere in L-band Interferometric SAR data , 2010, 2010 IEEE Radar Conference.

[39]  Franz J. Meyer,et al.  The Impact of the Ionosphere on Interferometric SAR Processing , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[40]  Marie-Pierre Doin,et al.  Improving InSAR geodesy using Global Atmospheric Models , 2014 .

[41]  Jan P. Weiss,et al.  Single receiver phase ambiguity resolution with GPS data , 2010 .

[42]  A. Rius,et al.  Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations , 1994 .

[43]  James L. Davis,et al.  GPS APPLICATIONS FOR GEODYNAMICS AND EARTHQUAKE STUDIES , 1997 .

[44]  D. Sandwell,et al.  Is there a discrepancy between geological and geodetic slip rates along the San Andreas Fault System , 2013 .

[45]  J. Means GPS precipitable water measurements used in the analysis of California and Nevada climate , 2011 .

[46]  Ferdaous Chaabane,et al.  A Multitemporal Method for Correction of Tropospheric Effects in Differential SAR Interferometry: Application to the Gulf of Corinth Earthquake , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[47]  J. Muller,et al.  Interferometric synthetic aperture radar atmospheric correction: GPS topography‐dependent turbulence model , 2006 .

[48]  P. Rosen,et al.  Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps , 1997 .

[49]  Zhizhao Liu,et al.  Ionosphere modelling using carrier smoothed ionosphere observations from a regional gps network , 2002 .

[50]  Didier Massonnet,et al.  Coseismic deformation field of the M=6.7 Northridge, California Earthquake of January 17, 1994 recorded by two radar satellites using interferometry , 1996 .

[51]  Anthony J. Mannucci,et al.  Subdaily northern hemisphere ionospheric maps using an extensive network of GPS receivers , 1995 .

[52]  Howard A. Zebker,et al.  Correction for interferometric synthetic aperture radar atmospheric phase artifacts using time series of zenith wet delay observations from a GPS network , 2006 .

[53]  E. Pottiaux,et al.  Impact of the Halloween 2003 ionospheric storm on kinematic GPS positioning in Europe , 2011 .

[54]  Marie-Pierre Doin,et al.  Measurement of interseismic strain across the Haiyuan fault (Gansu, China), by InSAR , 2008 .

[55]  Hideki Ueda,et al.  Advanced interferometric synthetic aperture radar (InSAR) time series analysis using interferograms of multiple‐orbit tracks: A case study on Miyake‐jima , 2011 .

[56]  K. Heki,et al.  GPS snow depth meter with geometry-free linear combinations of carrier phases , 2012, Journal of Geodesy.

[57]  Franz J. Meyer,et al.  A review of ionospheric effects in low-frequency SAR — Signals, correction methods, and performance requirements , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[58]  Marcello de Michele,et al.  Assessing Ionospheric Influence on L-Band SAR Data: Implications on Coseismic Displacement Measurements of the 2008 Sichuan Earthquake , 2010, IEEE Geoscience and Remote Sensing Letters.

[59]  Nobuo Kudo,et al.  Precise Orbit Determination for ALOS , 2007 .

[60]  Marie-Pierre Doin,et al.  Long-term growth of the Himalaya inferred from interseismic InSAR measurement , 2012 .

[61]  Michelle Sneed,et al.  Detection and Measurement of Land Subsidence Using Global Positioning System Surveying and Interferometric Synthetic Aperture Radar, Coachella Valley, California, 1996-2005 , 2007 .

[62]  David T. Sandwell,et al.  High‐resolution interseismic velocity data along the San Andreas Fault from GPS and InSAR , 2013 .

[63]  P. Rosen,et al.  Updated repeat orbit interferometry package released , 2004 .

[64]  Zhensen Wu,et al.  A survey of ionospheric effects on space-based radar , 2004 .

[65]  Ramon F. Hanssen,et al.  Reliable estimation of orbit errors in spaceborne SAR interferometry , 2012, Journal of Geodesy.

[66]  Zhen Liu,et al.  Joint Correction of Ionosphere Noise and Orbital Error in L-Band SAR Interferometry of Interseismic Deformation in Southern California , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[67]  Charles Werner,et al.  On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake , 1994 .

[68]  Xiaoli Ding,et al.  Atmospheric Effects on InSAR Measurements and Their Mitigation , 2008, Sensors.