Finite element methods with artificial diffusion for Hamilton-Jacobi-Bellman equations

In this short note we investigate the numerical performance of the method of artificial diffusion for second-order fully nonlinear Hamilton-Jacobi-Bellman equations. The method was proposed in (Jensen and Smears, On the convergence of finite element methods for Hamilton-Jacobi-Bellman equations, arxiv:1111.5423, 2011); where a framework of finite element methods for Hamilton-Jacobi-Bellman equations was studied theoretically. The numerical examples in this note study how the artificial diffusion is activated in regions of degeneracy, the effect of a locally selected diffusion parameter on the observed numerical dissipation and the solution of second-order fully nonlinear equations on irregular geometries.