Pitfalls in the dipolar model for the neocortical EEG sources.

For about six decades, primary current sources of the electroencephalogram (EEG) have been assumed dipolar in nature. In this study, we used electrophysiological recordings from anesthetized Wistar rats undergoing repeated whisker deflections to revise the biophysical foundations of the EEG dipolar model. In a first experiment, we performed three-dimensional recordings of extracellular potentials from a large portion of the barrel field to estimate intracortical multipolar moments generated either by single spiking neurons (i.e., pyramidal cells, PC; spiny stellate cells, SS) or by populations of them while experiencing synchronized postsynaptic potentials. As expected, backpropagating spikes along PC dendrites caused dipolar field components larger in the direction perpendicular to the cortical surface (49.7 ± 22.0 nA·mm). In agreement with the fact that SS cells have "close-field" configurations, their dipolar moment at any direction was negligible. Surprisingly, monopolar field components were detectable both at the level of single units (i.e., -11.7 ± 3.4 nA for PC) and at the mesoscopic level of mixed neuronal populations receiving extended synaptic inputs within either a cortical column (-0.44 ± 0.20 μA) or a 2.5-m(3)-voxel volume (-3.32 ± 1.20 μA). To evaluate the relationship between the macroscopically defined EEG equivalent dipole and the mesoscopic intracortical multipolar moments, we performed concurrent recordings of high-resolution skull EEG and laminar local field potentials. From this second experiment, we estimated the time-varying EEG equivalent dipole for the entire barrel field using either a multiple dipole fitting or a distributed type of EEG inverse solution. We demonstrated that mesoscopic multipolar components are altogether absorbed by any equivalent dipole in both types of inverse solutions. We conclude that the primary current sources of the EEG in the neocortex of rodents are not precisely represented by a single equivalent dipole and that the existence of monopolar components must be also considered at the mesoscopic level.

[1]  E. Adrian,et al.  THE BERGER RHYTHM: POTENTIAL CHANGES FROM THE OCCIPITAL LOBES IN MAN , 1934 .

[2]  C. A. Beevers,et al.  V.—On the Interpretation of Electroencephalic Potentials , 1944 .

[3]  R. LorentedeNo Analysis of the distribution of the action currents of nerve in volume conductors. , 1947 .

[4]  R. Lorente de Nó,et al.  Analysis of the distribution of the action currents of nerve in volume conductors. , 1947, Studies from the Rockefeller institute for medical research. Reprints. Rockefeller Institute for Medical Research.

[5]  J C Armington,et al.  A New Electroencephalogram Associated With Thinking. , 1948, Science.

[6]  M A B BRAZIER,et al.  The electrical fields at the surface of the head during sleep. , 1949, Electroencephalography and clinical neurophysiology.

[7]  Walter Wg,et al.  The electrical activity of the brain. , 1949 .

[8]  B. Kaada,et al.  Electrical activity of the brain. , 1953, Annual review of physiology.

[9]  C. Sem-Jacobsen,et al.  Electroencephalographic rhythms from the depths of the frontal lobe in 60 psychotic patients. , 1955, Electroencephalography and clinical neurophysiology.

[10]  J C SHAW,et al.  Potential distribution analysis. II. A theoretical consideration of its significance in terms of electrical field theory. , 1955, Electroencephalography and clinical neurophysiology.

[11]  C. A. Marsan,et al.  Patterns of cortical discharges and their relation to routine scalp electroencephalography. , 1958, Electroencephalography and clinical neurophysiology.

[12]  W. Freeman,et al.  Distribution in time and space of prepyriform electrical activity. , 1959, Journal of neurophysiology.

[13]  W. Rall Electrophysiology of a dendritic neuron model. , 1962, Biophysical journal.

[14]  J. B. Ranck,et al.  Specific impedance of rabbit cerebral cortex. , 1963, Experimental neurology.

[15]  J. Scherrer,et al.  Étude stratigrapique corticale de l'activité EEG spontanée , 1964 .

[16]  R. Gumnit,et al.  CHANGES IN DIRECT CURRENT ACTIVITY DURING EXPERIMENTAL FOCAL SEIZURES. , 1965, Electroencephalography and clinical neurophysiology.

[17]  W. Walter,et al.  COMPARISON OF SUBCORTICAL, CORTICAL AND SCALP ACTIVITY USING CHRONICALLY INDWELLING ELECTRODES IN MAN. , 1965, Electroencephalography and clinical neurophysiology.

[18]  D. B. Heppner,et al.  Considerations of quasi-stationarity in electrophysiological systems. , 1967, The Bulletin of mathematical biophysics.

[19]  C. Li,et al.  Specific resistivity of the cerebral cortex and white matter. , 1968, Experimental neurology.

[20]  D. Humphrey Re-analysis of the antidromic cortical response. I. Potentials evoked by stimulation of the isolated pyramidal tract. , 1968, Electroencephalography and clinical neurophysiology.

[21]  M R Schneider,et al.  A multistage process for computing virtual dipolar sources of EEG discharges from surface information. , 1972, IEEE transactions on bio-medical engineering.

[22]  S. Butler,et al.  The localization of equivalent dipoles of EEG sources by the application of electrical field theory. , 1975, Electroencephalography and clinical neurophysiology.

[23]  R. Jindra Mass action in the nervous system W. J. Freeman, Academic Press, New York (1975), 489 pp., (hard covers). $34.50 , 1976, Neuroscience.

[24]  F. H. Lopes da Silva,et al.  The cortical source of the alpha rhythm. , 1977, Neuroscience letters.

[25]  H. Petsche,et al.  Simultaneous laminar intracortical recordings in seizures. , 1977, Electroencephalography and clinical neurophysiology.

[26]  W Rall,et al.  Computed potentials of cortically arranged populations of neurons. , 1977, Journal of neurophysiology.

[27]  F. L. D. Silva,et al.  The cortical source of the alpha rhythm , 1977, Neuroscience Letters.

[28]  W. R. Lieb Membrane transport , 1978, Nature.

[29]  P. Nunez,et al.  Electric fields of the brain , 1981 .

[30]  Ernst Fernando Lopes Da Silva Niedermeyer,et al.  Electroencephalography, basic principles, clinical applications, and related fields , 1982 .

[31]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[32]  H. Petsche,et al.  The contribution of the cortical layers to the generation of the EEG: field potential and current source density analyses in the rabbit's visual cortex. , 1982, Electroencephalography and clinical neurophysiology.

[33]  D. Cohen,et al.  Demonstration of useful differences between magnetoencephalogram and electroencephalogram. , 1983, Electroencephalography and clinical neurophysiology.

[34]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[35]  R. Ilmoniemi,et al.  Selective localization of alpha brain activity with neuromagnetic measurements. , 1984, Electroencephalography and clinical neurophysiology.

[36]  M. Kraut,et al.  Intracortical generators of the flash VEP in monkeys. , 1985, Electroencephalography and clinical neurophysiology.

[37]  O Bertrand,et al.  A theoretical justification of the average reference in topographic evoked potential studies. , 1985, Electroencephalography and clinical neurophysiology.

[38]  M. Scherg,et al.  Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. , 1985, Electroencephalography and clinical neurophysiology.

[39]  R J Ilmoniemi,et al.  Cerebral magnetic fields. , 1986, Critical reviews in biomedical engineering.

[40]  K. Foster,et al.  Dielectric properties of tissues and biological materials: a critical review. , 1989, Critical reviews in biomedical engineering.

[41]  Ted J. Biggerstaff,et al.  Concepts and models , 1989 .

[42]  M. Hämäläinen,et al.  Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data , 1989, IEEE Transactions on Biomedical Engineering.

[43]  C Baumgartner,et al.  Laminar analysis of extracellular field potentials in rat vibrissa/barrel cortex. , 1990, Journal of neurophysiology.

[44]  B. W. van Dijk,et al.  Symmetry considerations in the quasi-static approximation of volume conductor theory , 1991 .

[45]  R. Traub,et al.  A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. , 1991, Journal of neurophysiology.

[46]  J.C. Mosher,et al.  Multiple dipole modeling and localization from spatio-temporal MEG data , 1992, IEEE Transactions on Biomedical Engineering.

[47]  H. Ussing Membrane Transport in Biology , 2011 .

[48]  M. Stewart,et al.  Current source density analysis of the hippocampal theta rhythm: associated sustained potentials and candidate synaptic generators , 1993, Brain Research.

[49]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[50]  D. Johnston,et al.  Foundations of Cellular Neurophysiology , 1994 .

[51]  Robert Plonsey,et al.  Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields , 1995 .

[52]  R. W. Lau,et al.  The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. , 1996, Physics in medicine and biology.

[53]  Y. Okada,et al.  Genesis of MEG signals in a mammalian CNS structure. , 1997, Electroencephalography and clinical neurophysiology.

[54]  J. Ebersole Defining epileptogenic foci: past, present, future. , 1997, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[55]  Hiroshi Shibasaki,et al.  Simultaneous Recording of Epileptiform Discharges by MEG and Subdural Electrodes in Temporal Lobe Epilepsy , 1997, NeuroImage.

[56]  G. Buzsáki,et al.  Somadendritic backpropagation of action potentials in cortical pyramidal cells of the awake rat. , 1998, Journal of neurophysiology.

[57]  J. E. Moran,et al.  Analysis of MEG signals of spreading cortical depression with propagation constrained to a rectangular cortical strip I. Lissencephalic rabbit model , 1999, Brain Research.

[58]  S. M. Bowyer,et al.  Analysis of MEG signals of spreading cortical depression with propagation constrained to a rectangular cortical strip II. Gyrencephalic swine model , 1999, Brain Research.

[59]  R. Pascual-Marqui Review of methods for solving the EEG inverse problem , 1999 .

[60]  Thom F. Oostendorp,et al.  The conductivity of the human skull: results of in vivo and in vitro measurements , 2000, IEEE Transactions on Biomedical Engineering.

[61]  J S Ebersole,et al.  Noninvasive Localization of Epileptogenic Foci by EEG Source Modeling , 2000, Epilepsia.

[62]  Jorge J. Riera,et al.  Discrete Spline Electric-Magnetic Tomography (DSPECT) Based on Realistic Neuroanatomy , 2000 .

[63]  Richard M. Leahy,et al.  Electromagnetic brain mapping , 2001, IEEE Signal Process. Mag..

[64]  Hiroshi Masuda,et al.  Epileptic Spikes: Magnetoencephalography versus Simultaneous Electrocorticography , 2002, Epilepsia.

[65]  Y. Okada,et al.  Physiological origins of evoked magnetic fields and extracellular field potentials produced by guinea‐pig CA3 hippocampal slices , 2002, The Journal of physiology.

[66]  R. Leahy,et al.  On MEG forward modelling using multipolar expansions. , 2002, Physics in medicine and biology.

[67]  G. Huiskamp,et al.  High Resolution Spatio-Temporal EEG-MEG Analysis of Rolandic Spikes , 2004, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[68]  Bin He,et al.  An alternative subspace approach to EEG dipole source localization , 2004 .

[69]  Christof Koch,et al.  Electrical Interactions via the Extracellular Potential Near Cell Bodies , 1999, Journal of Computational Neuroscience.

[70]  David Kleinfeld,et al.  Current flow in vibrissa motor cortex can phase-lock with exploratory rhythmic whisking in rat. , 2004, Journal of neurophysiology.

[71]  José Maria Fernandes,et al.  What Does an Epileptiform Spike Look Like in MEG? Comparison Between Coincident EEG and MEG Spikes , 2005, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[72]  J. Riera,et al.  Nonlinear Local Electro-Vascular Coupling . Part II : From Data To Neuronal Masses , 2005 .

[73]  H. Berger Über das Elektrenkephalogramm des Menschen , 1929, Archiv für Psychiatrie und Nervenkrankheiten.

[74]  J. Ebersole,et al.  Intracranial EEG Substrates of Scalp EEG Interictal Spikes , 2005, Epilepsia.

[75]  Jorge J. Riera,et al.  Nonlinear Local Electro-Vascular Coupling. Part I: A Theoretical Model , 2006 .

[76]  Y. Okada,et al.  Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals , 2006, The Journal of physiology.

[77]  J. C. Jimenez,et al.  Nonlinear local electrovascular coupling. I: A theoretical model , 2006, Human brain mapping.

[78]  Christof Koch,et al.  Using extracellular action potential recordings to constrain compartmental models , 2007, Journal of Computational Neuroscience.

[79]  D. McCormick,et al.  Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential , 2006, Nature.

[80]  Klas H. Pettersen,et al.  Current-source density estimation based on inversion of electrostatic forward solution: Effects of finite extent of neuronal activity and conductivity discontinuities , 2006, Journal of Neuroscience Methods.

[81]  C. Koch,et al.  On the origin of the extracellular action potential waveform: A modeling study. , 2006, Journal of neurophysiology.

[82]  C. Petersen The Functional Organization of the Barrel Cortex , 2007, Neuron.

[83]  F. Haiss,et al.  Spatiotemporal Dynamics of Cortical Sensorimotor Integration in Behaving Mice , 2007, Neuron.

[84]  N. Logothetis,et al.  In Vivo Measurement of Cortical Impedance Spectrum in Monkeys: Implications for Signal Propagation , 2007, Neuron.

[85]  R Kawashima,et al.  Nonlinear local electrovascular coupling. II: From data to neuronal masses , 2007, Human brain mapping.

[86]  D. Contreras,et al.  Cellular mechanisms of suppressive interactions between somatosensory responses in vivo. , 2007, Journal of neurophysiology.

[87]  Dominique L. Pritchett,et al.  Neural Correlates of Tactile Detection: A Combined Magnetoencephalography and Biophysically Based Computational Modeling Study , 2007, The Journal of Neuroscience.

[88]  C. Schroeder,et al.  Neuronal Oscillations and Multisensory Interaction in Primary Auditory Cortex , 2007, Neuron.

[89]  H. Swadlow,et al.  Dendritic Backpropagation and the State of the Awake Neocortex , 2007, The Journal of Neuroscience.

[90]  G. Karmos,et al.  Entrainment of Neuronal Oscillations as a Mechanism of Attentional Selection , 2008, Science.

[91]  Christof Koch,et al.  Dynamic Moment Analysis of the Extracellular Electric Field of a Biologically Realistic Spiking Neuron , 2007, Neural Computation.

[92]  Klas H. Pettersen,et al.  Amplitude variability and extracellular low-pass filtering of neuronal spikes. , 2008, Biophysical journal.

[93]  Christoph M. Michel,et al.  A mouse model for studying large-scale neuronal networks using EEG mapping techniques , 2008, NeuroImage.

[94]  Fahmeed Hyder,et al.  The micro-architecture of the cerebral cortex: Functional neuroimaging models and metabolism , 2008, NeuroImage.

[95]  J. Trylska,et al.  Continuum molecular electrostatics, salt effects, and counterion binding—A review of the Poisson–Boltzmann theory and its modifications , 2008, Biopolymers.

[96]  A. Lowe,et al.  Sensory inputs from whisking movements modify cortical whisker maps visualized with functional magnetic resonance imaging. , 2008, Cerebral cortex.

[97]  C. Bédard,et al.  Macroscopic models of local field potentials and the apparent 1/f noise in brain activity. , 2008, Biophysical journal.

[98]  B. Li,et al.  Continuum electrostatics for ionic solutions with non-uniform ionic sizes , 2009 .

[99]  C. Gabriel,et al.  Electrical conductivity of tissue at frequencies below 1 MHz , 2009, Physics in medicine and biology.

[100]  Dominique L. Pritchett,et al.  Quantitative analysis and biophysically realistic neural modeling of the MEG mu rhythm: rhythmogenesis and modulation of sensory-evoked responses. , 2009, Journal of neurophysiology.

[101]  R. Kawashima,et al.  An evaluation of the conductivity profile in the somatosensory barrel cortex of Wistar rats. , 2010, Journal of neurophysiology.

[102]  D. Johnston,et al.  Negative Blood Oxygen Level Dependence in the Rat:A Model for Investigating the Role of Suppression in Neurovascular Coupling , 2010, The Journal of Neuroscience.

[103]  R. Kawashima,et al.  Concurrent observations of astrocytic Ca2+ activity and multisite extracellular potentials from an intact cerebral cortex , 2010, Journal of biophotonics.

[104]  Claude Bédard,et al.  Comparative power spectral analysis of simultaneous elecroencephalographic and magnetoencephalographic recordings in humans suggests non-resistive extracellular media , 2010, Journal of Computational Neuroscience.

[105]  Takeshi Ogawa,et al.  A mini-cap for simultaneous EEG and fMRI recording in rodents , 2011, NeuroImage.

[106]  Localization of single barrel column by means of a volumetric current source density analysis in the somatosensory cortex of rat , 2011, Neuroscience Research.

[107]  Guo-Wei Wei,et al.  Poisson-Boltzmann-Nernst-Planck model. , 2011, The Journal of chemical physics.

[108]  Takeshi Ogawa,et al.  Large-Scale Heterogeneous Representation of Sound Attributes in Rat Primary Auditory Cortex: From Unit Activity to Population Dynamics , 2011, The Journal of Neuroscience.