Is cortical vasculature functionally organized?

The cortical vasculature is a well-structured and organized system, but the extent to which it is organized with respect to the neuronal functional architecture is unknown. In particular, does vasculature follow the same functional organization as cortical columns? In principle, cortical columns that share tuning for stimulus features like orientation may often be active together and thus require oxygen and metabolic nutrients together. If the cortical vasculature is built to serve these needs, it may also tend to aggregate and amplify orientation specific signals and explain why they are available in fMRI data at very low resolution.

[1]  A. Kleinschmidt,et al.  Brain or veinoxygenation or flow? On signal physiology in functional MRI of human brain activation , 1994, NMR in biomedicine.

[2]  A. Shmuel,et al.  Imaging brain function in humans at 7 Tesla , 2001, Magnetic resonance in medicine.

[3]  Kenichi Ueno,et al.  A temporal frequency–dependent functional architecture in human V1 revealed by high-resolution fMRI , 2007, Nature Neuroscience.

[4]  J R Reichenbach,et al.  Sub‐millimeter fMRI at 1.5 tesla: Correlation of high resolution with low resolution measurements , 1999, Journal of magnetic resonance imaging : JMRI.

[5]  Christian Fischer,et al.  Activation of the UNC5B receptor by Netrin-1 inhibits sprouting angiogenesis. , 2007, Genes & development.

[6]  Hans P. Op de Beeck,et al.  Against hyperacuity in brain reading: Spatial smoothing does not hurt multivariate fMRI analyses? , 2010, NeuroImage.

[7]  G. Rees,et al.  Predicting the orientation of invisible stimuli from activity in human primary visual cortex , 2005, Nature Neuroscience.

[8]  D. Hubel,et al.  Shape and arrangement of columns in cat's striate cortex , 1963, The Journal of physiology.

[9]  David J. Anderson,et al.  Sensory Nerves Determine the Pattern of Arterial Differentiation and Blood Vessel Branching in the Skin , 2002, Cell.

[10]  Essa Yacoub,et al.  Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla , 2007, NeuroImage.

[11]  Ravi S. Menon,et al.  Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. , 1993, Biophysical journal.

[12]  Ravi S. Menon,et al.  Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[13]  K. Alitalo,et al.  VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia , 2003, The Journal of cell biology.

[14]  Li Yuan,et al.  The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system , 2004, Nature.

[15]  T. Wiesel,et al.  Functional architecture of cortex revealed by optical imaging of intrinsic signals , 1986, Nature.

[16]  N. Harel,et al.  Blood capillary distribution correlates with hemodynamic-based functional imaging in cerebral cortex. , 2002, Cerebral cortex.

[17]  Kazuto Masamoto,et al.  Imaging brain vasculature with BOLD microscopy: MR detection limits determined by in vivo two‐photon microscopy , 2008, Magnetic resonance in medicine.

[18]  Daniel L Adams,et al.  The cortical column: a structure without a function , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[19]  Keiji Tanaka,et al.  Human Ocular Dominance Columns as Revealed by High-Field Functional Magnetic Resonance Imaging , 2001, Neuron.

[20]  Dai,et al.  Activation of , 2021, Angewandte Chemie.

[21]  Adrian T. Lee,et al.  Discrimination of Large Venous Vessels in Time‐Course Spiral Blood‐Oxygen‐Level‐Dependent Magnetic‐Resonance Functional Neuroimaging , 1995, Magnetic resonance in medicine.

[22]  H. Duvernoy,et al.  Cortical blood vessels of the human brain , 1981, Brain Research Bulletin.

[23]  Ravi S. Menon,et al.  Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging. , 1997, Journal of neurophysiology.

[24]  Frank Bradke,et al.  Netrin-1 Is a Novel Myelin-Associated Inhibitor to Axon Growth , 2008, The Journal of Neuroscience.

[25]  J. Horton,et al.  Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[26]  Francis Cassot,et al.  Morphometry of the human cerebral cortex microcirculation: General characteristics and space-related profiles , 2008, NeuroImage.

[27]  A. Grinvald,et al.  Columnar Resolution of Blood Volume and Oximetry Functional Maps in the Behaving Monkey Implications for fMRI , 2004, Neuron.

[28]  Chenghua Gu,et al.  Peripheral nerve-derived VEGF promotes arterial differentiation via neuropilin 1-mediated positive feedback , 2005, Development.

[29]  P. Carmeliet,et al.  Common mechanisms of nerve and blood vessel wiring , 2005, Nature.

[30]  T. Wiesel,et al.  Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  Essa Yacoub,et al.  In vivo micro-MRI of intracortical neurovasculature , 2006, NeuroImage.

[32]  A L Benabid,et al.  Functional MRI of the human brain: predominance of signals from extracerebral veins. , 1994, Neuroreport.

[33]  Essa Yacoub,et al.  High-field fMRI unveils orientation columns in humans , 2008, Proceedings of the National Academy of Sciences.

[34]  Wim Vanduffel,et al.  The Radial Bias: A Different Slant on Visual Orientation Sensitivity in Human and Nonhuman Primates , 2006, Neuron.

[35]  Jean A. Tkach,et al.  2D and 3D high resolution gradient echo functional imaging of the brain: Venous contributions to signal in motor cortex studies , 1994, NMR in biomedicine.

[36]  R. Lorente ARCHITECTONICS AND STRUCTURE OF T H E CEREBRAL CORTEX , 2012 .

[37]  T. Wiesel,et al.  Clustered intrinsic connections in cat visual cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Xiaoping Hu,et al.  Potential pitfalls of functional MRI using conventional gradient‐recalled echo techniques , 1994, NMR in biomedicine.

[40]  K. Uğurbil,et al.  Diffusion‐weighted spin‐echo fMRI at 9.4 T: Microvascular/tissue contribution to BOLD signal changes , 1999, Magnetic resonance in medicine.

[41]  Lawrence C. Sincich,et al.  Complete Pattern of Ocular Dominance Columns in Human Primary Visual Cortex , 2007, The Journal of Neuroscience.

[42]  E. Haacke,et al.  Identification of vascular structures as a major source of signal contrast in high resolution 2D and 3D functional activation imaging of the motor cortex at l.5T preliminary results , 1993, Magnetic resonance in medicine.

[43]  A. Grinvald,et al.  Interactions Between Electrical Activity and Cortical Microcirculation Revealed by Imaging Spectroscopy: Implications for Functional Brain Mapping , 1996, Science.

[44]  Essa Yacoub,et al.  Signal and noise characteristics of Hahn SE and GE BOLD fMRI at 7 T in humans , 2005, NeuroImage.

[45]  K. Alitalo,et al.  Neural guidance molecules regulate vascular remodeling and vessel navigation. , 2005, Genes & development.

[46]  D. Hubel,et al.  Anatomical Demonstration of Columns in the Monkey Striate Cortex , 1969, Nature.

[47]  J. Milbrandt,et al.  Artemin Is a Vascular-Derived Neurotropic Factor for Developing Sympathetic Neurons , 2002, Neuron.

[48]  C. Sherrington,et al.  On the Regulation of the Blood‐supply of the Brain , 1890, The Journal of physiology.

[49]  K. Uğurbil,et al.  Spin‐echo fMRI in humans using high spatial resolutions and high magnetic fields , 2003, Magnetic resonance in medicine.

[50]  D Purves,et al.  Specialized vascularization of the primate visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  K. Uğurbil,et al.  Microvascular BOLD contribution at 4 and 7 T in the human brain: Gradient‐echo and spin‐echo fMRI with suppression of blood effects , 2003, Magnetic resonance in medicine.

[52]  V. Mountcastle,et al.  Response properties of neurons of cat's somatic sensory cortex to peripheral stimuli. , 1957, Journal of neurophysiology.

[53]  Johannes Reichold,et al.  The microvascular system of the striate and extrastriate visual cortex of the macaque. , 2008, Cerebral cortex.

[54]  Yu-Chung N. Cheng,et al.  Susceptibility weighted imaging (SWI) , 2004, Zeitschrift fur medizinische Physik.

[55]  A. Song,et al.  Diffusion weighted fMRI at 1.5 T , 1996, Magnetic resonance in medicine.

[56]  Miranda Scolari,et al.  Estimating the influence of attention on population codes in human visual cortex using voxel-based tuning functions , 2009, NeuroImage.

[57]  K. Uğurbil,et al.  Experimental determination of the BOLD field strength dependence in vessels and tissue , 1997, Magnetic resonance in medicine.

[58]  Ping Wang,et al.  Spatial specificity of the enhanced dip inherently induced by prolonged oxygen consumption in cat visual cortex: Implication for columnar resolution functional MRI , 2006, NeuroImage.

[59]  E. Haacke,et al.  Susceptibility-Weighted Imaging: Technical Aspects and Clinical Applications, Part 1 , 2008, American Journal of Neuroradiology.

[60]  F M de Monasterio,et al.  Arrangement of ocular dominance columns in human visual cortex. , 1990, Archives of ophthalmology.

[61]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.