The structural biology of biosynthetic megaenzymes.

The modular polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) are among the largest and most complicated enzymes in nature. In these biosynthetic systems, independently folding protein domains, which are organized into units called 'modules', operate in assembly-line fashion to construct polymeric chains and tailor their functionalities. Products of PKSs and NRPSs include a number of blockbuster medicines, and this has motivated researchers to understand how they operate so that they can be modified by genetic engineering. Beginning in the 1990s, structural biology has provided a number of key insights. The emerging picture is one of remarkable dynamics and conformational programming in which the chemical states of individual catalytic domains are communicated to the others, configuring the modules for the next stage in the biosynthesis. This unexpected level of complexity most likely accounts for the low success rate of empirical genetic engineering experiments and suggests ways forward for productive megaenzyme synthetic biology.

[1]  Andrzej Witkowski,et al.  Structural and functional organization of the animal fatty acid synthase. , 2003, Progress in lipid research.

[2]  Borries Demeler,et al.  The missing linker: a dimerization motif located within polyketide synthase modules. , 2013, ACS chemical biology.

[3]  Wei Xu,et al.  Structural analysis of protein–protein interactions in type I polyketide synthases , 2013, Critical reviews in biochemistry and molecular biology.

[4]  Chaitan Khosla,et al.  Solution structure and proposed domain–domain recognition interface of an acyl carrier protein domain from a modular polyketide synthase , 2007, Protein science : a publication of the Protein Society.

[5]  David H Sherman,et al.  Cyanobacterial polyketide synthase docking domains: a tool for engineering natural product biosynthesis. , 2013, Chemistry & biology.

[6]  Janet L. Smith,et al.  Biochemical and structural characterization of the tautomycetin thioesterase: analysis of a stereoselective polyketide hydrolase. , 2010, Angewandte Chemie.

[7]  Robert M Stroud,et al.  The structure of a ketoreductase determines the organization of the beta-carbon processing enzymes of modular polyketide synthases. , 2006, Structure.

[8]  M. Marahiel,et al.  Ways of Assembling Complex Natural Products on Modular Nonribosomal Peptide Synthetases , 2002, Chembiochem : a European journal of chemical biology.

[9]  Janet L. Smith,et al.  Structural and mechanistic insights into polyketide macrolactonization from polyketide-based affinity labels , 2006, Nature chemical biology.

[10]  J. Faraldo-Gómez,et al.  Mechanism of substrate shuttling by the acyl-carrier protein within the fatty acid mega-synthase. , 2010, Journal of the American Chemical Society.

[11]  R. Stroud,et al.  Insights into channel architecture and substrate specificity from crystal structures of two macrocycle-forming thioesterases of modular polyketide synthases. , 2002, Biochemistry.

[12]  T. Stehle,et al.  Vinylogous chain branching catalysed by a dedicated polyketide synthase module , 2013, Nature.

[13]  M. Marahiel,et al.  Solution structure of PCP, a prototype for the peptidyl carrier domains of modular peptide synthetases. , 2000, Structure.

[14]  Adrian Keatinge-Clay,et al.  Elucidation of the Cryptic Epimerase Activity of Redox-Inactive Ketoreductase Domains from Modular Polyketide Synthases by Tandem Equilibrium Isotope Exchange , 2014, Journal of the American Chemical Society.

[15]  Christopher T. Walsh,et al.  The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains , 2002, Nature Structural Biology.

[16]  Peter Wipf,et al.  Terminal Alkene Formation by the Thioesterase of Curacin A Biosynthesis , 2011, The Journal of Biological Chemistry.

[17]  S. Wakil,et al.  Fatty acid synthase, a proficient multifunctional enzyme. , 1989, Biochemistry.

[18]  M. Marahiel,et al.  Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesterase domain SrfTE. , 2002, Structure.

[19]  M. Marahiel,et al.  Evidence for a monomeric structure of nonribosomal Peptide synthetases. , 2002, Chemistry & biology.

[20]  M. Marahiel,et al.  Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Kira J Weissman,et al.  Evaluating Ketoreductase Exchanges as a Means of Rationally Altering Polyketide Stereochemistry , 2015, Chembiochem : a European journal of chemical biology.

[22]  Christopher M Thomas,et al.  A conserved motif flags Acyl Carrier Proteins for β-branching in polyketide synthesis , 2013, Nature chemical biology.

[23]  L. Du,et al.  Crystal structure of Bacillus cereus D-alanyl carrier protein ligase (DltA) in complex with ATP. , 2009, Journal of molecular biology.

[24]  C. Walsh,et al.  Dynamic thiolation–thioesterase structure of a non-ribosomal peptide synthetase , 2008, Nature.

[25]  Kai Blin,et al.  NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity , 2011, Nucleic Acids Res..

[26]  David H Sherman,et al.  Crystal structures of dehydratase domains from the curacin polyketide biosynthetic pathway. , 2010, Structure.

[27]  P. Spear,et al.  A Double-Hotdog with a New Trick: Structure and Mechanism of the trans-Acyltransferase Polyketide Synthase Enoyl-isomerase , 2014, ACS chemical biology.

[28]  Arnaud Gruez,et al.  Insights into the function of trans-acyl transferase polyketide synthases from the SAXS structure of a complete module , 2014 .

[29]  Sarojini Adusumilli,et al.  Giant plasmid-encoded polyketide synthases produce the macrolide toxin of Mycobacterium ulcerans. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Georgios Skiniotis,et al.  Structural rearrangements of a polyketide synthase module during its catalytic cycle , 2014, Nature.

[31]  P. Güntert,et al.  Characterization of molecular interactions between ACP and halogenase domains in the Curacin A polyketide synthase. , 2012, ACS chemical biology.

[32]  D. Cane,et al.  Structure and mechanism of the trans-acting acyltransferase from the disorazole synthase. , 2011, Biochemistry.

[33]  David H Sherman,et al.  Structural basis for binding specificity between subclasses of modular polyketide synthase docking domains. , 2009, ACS chemical biology.

[34]  A. Keatinge-Clay,et al.  A tylosin ketoreductase reveals how chirality is determined in polyketides. , 2007, Chemistry & biology.

[35]  Borries Demeler,et al.  Divergence of multimodular polyketide synthases revealed by a didomain structure , 2012, Nature chemical biology.

[36]  Tsutomu Matsui,et al.  Architectures of whole-module and bimodular proteins from the 6-deoxyerythronolide B synthase. , 2014, Journal of molecular biology.

[37]  Adrian Keatinge-Clay,et al.  Crystal structure of the erythromycin polyketide synthase dehydratase. , 2008, Journal of molecular biology.

[38]  Peter Güntert,et al.  Crystal structure of a PCP/Sfp complex reveals the structural basis for carrier protein posttranslational modification. , 2014, Chemistry & biology.

[39]  Chu-Young Kim,et al.  Structural and mechanistic analysis of protein interactions in module 3 of the 6-deoxyerythronolide B synthase. , 2007, Chemistry & biology.

[40]  Kira J Weissman,et al.  The structure of docking domains in modular polyketide synthases. , 2003, Chemistry & biology.

[41]  S. Bruner,et al.  Structural basis for phosphopantetheinyl carrier domain interactions in the terminal module of nonribosomal peptide synthetases. , 2011, Chemistry & biology.

[42]  A. Cavalli,et al.  Insights into protein-protein and enzyme-substrate interactions in modular polyketide synthases. , 2010, Chemistry & biology.

[43]  M. Marahiel,et al.  Structural and functional insights into a peptide bond-forming bidomain from a nonribosomal peptide synthetase. , 2007, Structure.

[44]  P. Leadlay,et al.  The thioesterase of the erythromycin-producing polyketide synthase: mechanistic studies in vitro to investigate its mode of action and substrate specificity , 1995 .

[45]  K. Weissman Uncovering the structures of modular polyketide synthases. , 2015, Natural product reports.

[46]  B. Shen,et al.  The crystal structure of BlmI as a model for nonribosomal peptide synthetase peptidyl carrier proteins , 2014, Proteins.

[47]  Alexander Rittner,et al.  Modular Polyketide Synthases (PKSs): A New Model Fits All? , 2014, Chembiochem : a European journal of chemical biology.

[48]  A. Keatinge-Clay,et al.  Structural studies of an A2-type modular polyketide synthase ketoreductase reveal features controlling α-substituent stereochemistry. , 2013, ACS chemical biology.

[49]  James Staunton,et al.  Evidence for a double-helical structure for modular polyketide synthases , 1996, Nature Structural Biology.

[50]  P. Marlière,et al.  Multienzymatic non ribosomal peptide biosynthesis: identification of the functional domains catalysing peptide elongation and epimerisation. , 1995, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[51]  J. Staunton,et al.  Active-site residue, domain and module swaps in modular polyketide synthases , 2003, Journal of Industrial Microbiology and Biotechnology.

[52]  M. Marahiel,et al.  Conformational Switches Modulate Protein Interactions in Peptide Antibiotic Synthetases , 2006, Science.

[53]  C. Redfield,et al.  Structure of the terminal PCP domain of the non‐ribosomal peptide synthetase in teicoplanin biosynthesis , 2015, Proteins.

[54]  P. Leadlay,et al.  Repositioning of a domain in a modular polyketide synthase to promote specific chain cleavage. , 1995, Science.

[55]  L. Essen,et al.  Structure of the epimerization domain of tyrocidine synthetase A. , 2014, Acta crystallographica. Section D, Biological crystallography.

[56]  C. Walsh,et al.  Dimeric structure of the six-domain VibF subunit of vibriobactin synthetase: mutant domain activity regain and ultracentrifugation studies. , 2003, Biochemistry.

[57]  Jörn Piel,et al.  Biosynthesis of polyketides by trans-AT polyketide synthases. , 2016, Natural product reports.

[58]  Abram Axelrod,et al.  Structural and functional studies of a trans‐acyltransferase polyketide assembly line enzyme that catalyzes stereoselective α‐ and β‐ketoreduction , 2014, Proteins.

[59]  H. Jenke-Kodama,et al.  Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection , 2008, Nature Biotechnology.

[60]  P. Leadlay,et al.  Stereospecific acyl transfers on the erythromycin-producing polyketide synthase. , 1994, Science.

[61]  C. Aldrich,et al.  Structure of PA1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains. , 2012, Biochemistry.

[62]  A. Lawen,et al.  Cyclosporin synthetase. The most complex peptide synthesizing multienzyme polypeptide so far described. , 1990, The Journal of biological chemistry.

[63]  D. Cane,et al.  Expression, site-directed mutagenesis, and steady state kinetic analysis of the terminal thioesterase domain of the methymycin/picromycin polyketide synthase. , 2002, Biochemistry.

[64]  G. Challis,et al.  Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. , 2000, Chemistry & biology.

[65]  C Richard Hutchinson,et al.  A model of structure and catalysis for ketoreductase domains in modular polyketide synthases. , 2003, Biochemistry.

[66]  F. Lipmann,et al.  Peptidyl transfers in gramicidin S bisoynthesis from enzyme-bound thioester intermediates. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[67]  P. Güntert,et al.  Structural basis for the selectivity of the external thioesterase of the surfactin synthetase , 2008, Nature.

[68]  J. Martín,et al.  The cluster of penicillin biosynthetic genes. Identification and characterization of the pcbAB gene encoding the alpha-aminoadipyl-cysteinyl-valine synthetase and linkage to the pcbC and penDE genes. , 1990, The Journal of biological chemistry.

[69]  Patrick Caffrey,et al.  Conserved Amino Acid Residues Correlating With Ketoreductase Stereospecificity in Modular Polyketide Synthases , 2003, Chembiochem : a European journal of chemical biology.

[70]  M. Marahiel,et al.  The thioesterase domain of the fengycin biosynthesis cluster: a structural base for the macrocyclization of a non-ribosomal lipopeptide. , 2006, Journal of molecular biology.

[71]  Georgios Skiniotis,et al.  Structure of a modular polyketide synthase , 2014, Nature.

[72]  A. Keatinge-Clay,et al.  Structural and functional analysis of C2-type ketoreductases from modular polyketide synthases. , 2011, Journal of molecular biology.

[73]  K. Reynolds,et al.  Structural and stereochemical analysis of a modular polyketide synthase ketoreductase domain required for the generation of a cis-alkene. , 2013, Chemistry & biology.

[74]  T. Stachelhaus,et al.  Modular Structure of Peptide Synthetases Revealed by Dissection of the Multifunctional Enzyme GrsA (*) , 1995, The Journal of Biological Chemistry.

[75]  P. Leadlay,et al.  Identification of DEBS 1, DEBS 2 and DEBS 3, the multienzyme polypeptides of the erythromycin‐producing polyketide synthase from Saccharopolyspora erythraea , 1992, FEBS letters.

[76]  D. Rodionov,et al.  Crystal structures of the first condensation domain of CDA synthetase suggest conformational changes during the synthetic cycle of nonribosomal peptide synthetases. , 2013, Journal of molecular biology.

[77]  Cong-Zhao Zhou,et al.  Structure of the adenylation-peptidyl carrier protein didomain of the Microcystis aeruginosa microcystin synthetase McyG. , 2015, Acta crystallographica. Section D, Biological crystallography.

[78]  C. Aldrich,et al.  Biochemical and structural characterization of bisubstrate inhibitors of BasE, the self-standing nonribosomal peptide synthetase adenylate-forming enzyme of acinetobactin synthesis. , 2010, Biochemistry.

[79]  C. Aldrich,et al.  Structural and functional investigation of the intermolecular interaction between NRPS adenylation and carrier protein domains. , 2012, Chemistry & biology.

[80]  P. Brick,et al.  Structural basis for the activation of phenylalanine in the nonribosomal biosynthesis of gramicidin S the peptide product , 2013 .

[81]  J B McAlpine,et al.  Modular organization of genes required for complex polyketide biosynthesis. , 1991, Science.

[82]  H. von Döhren,et al.  On the domain construction of the multienzyme gramicidin S synthetase 2. Isolation of domains activating valine and leucine. , 1990, European journal of biochemistry.

[83]  Timm Maier,et al.  The Crystal Structure of a Mammalian Fatty Acid Synthase , 2008, Science.

[84]  Richard A. Lewis,et al.  Introduction of a non-natural amino acid into a nonribosomal peptide antibiotic by modification of adenylation domain specificity. , 2012, Angewandte Chemie.

[85]  T. Stachelhaus,et al.  The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. , 1999, Chemistry & biology.

[86]  Janet L. Smith,et al.  Structural basis for macrolactonization by the pikromycin thioesterase , 2006, Nature chemical biology.

[87]  L. Miercke,et al.  Crystal structure of the macrocycle-forming thioesterase domain of the erythromycin polyketide synthase: Versatility from a unique substrate channel , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Abram Axelrod,et al.  A close look at a ketosynthase from a trans-acyltransferase modular polyketide synthase. , 2014, Structure.

[89]  C. Walsh,et al.  Tailoring enzymes that modify nonribosomal peptides during and after chain elongation on NRPS assembly lines. , 2001, Current opinion in chemical biology.

[90]  P. Leadlay,et al.  Organization of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: analysis of the enzymatic domains in the modular polyketide synthase. , 1996, Gene.

[91]  C. Walsh,et al.  Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF. , 1998, Biochemistry.

[92]  Chu-Young Kim,et al.  The 2.7-Å crystal structure of a 194-kDa homodimeric fragment of the 6-deoxyerythronolide B synthase , 2006 .

[93]  M. Marahiel,et al.  Nonribosomal peptide synthetases: structures and dynamics. , 2010, Current opinion in structural biology.

[94]  Lars-Oliver Essen,et al.  Crystal Structure of the Termination Module of a Nonribosomal Peptide Synthetase , 2008, Science.

[95]  A. Gulick Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. , 2009, ACS chemical biology.

[96]  P. Leadlay,et al.  The molecular basis of Celmer's rules: the stereochemistry of the condensation step in chain extension on the erythromycin polyketide synthase. , 1997, Biochemistry.

[97]  G. Skiniotis,et al.  Architecture of the polyketide synthase module: surprises from electron cryo-microscopy. , 2015, Current opinion in structural biology.

[98]  P. Leadlay,et al.  Molecular basis of Celmer's rules: role of the ketosynthase domain in epimerisation and demonstration that ketoreductase domains can have altered product specificity with unnatural substrates. , 2001, Chemistry & biology.

[99]  P. Leadlay,et al.  An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea , 1990, Nature.