Acoustic communication for medical nanorobots

Abstract Communication among microscopic robots (nanorobots) can coordinate their activities for biomedical tasks. The feasibility of in vivo  ultrasonic communication is evaluated for micron-size robots broadcasting into various types of tissues. Frequencies between 10 MHz and 300 MHz give the best tradeoff between efficient acoustic generation and attenuation for communication over distances of about 100 microns. Based on these results, we find power available from ambient oxygen and glucose in the bloodstream can readily support communication rates of about 10 4 bits/s between micron-sized robots. We discuss techniques, such as directional acoustic beams, that can increase this rate. The acoustic pressure fields enabling this communication are unlikely to damage nearby tissue, and short bursts at considerably higher power could be of therapeutic use.

[1]  Robert A. Freitas,et al.  Nanomedicine, Volume Iia: Biocompatibility , 2003 .

[2]  Anthony J. G. Hey,et al.  Feynman Lectures on Computation , 1996 .

[3]  Vicsek,et al.  Novel type of phase transition in a system of self-driven particles. , 1995, Physical review letters.

[4]  H. Gaub,et al.  Single-Molecule Cut-and-Paste Surface Assembly , 2008, Science.

[5]  R. Skalak,et al.  Strain energy function of red blood cell membranes. , 1973, Biophysical journal.

[6]  M. Radosavljevic,et al.  Biological Physics: Energy, Information, Life , 2003 .

[7]  C. Jones,et al.  The bacterial flagellum and flagellar motor: structure, assembly and function. , 1991, Advances in microbial physiology.

[8]  W. Rappel,et al.  Self-organization in systems of self-propelled particles. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Martin Pumera,et al.  Nanorobots: the ultimate wireless self-propelled sensing and actuating devices. , 2009, Chemistry, an Asian journal.

[10]  W. Desmet,et al.  Ultrasound thrombolysis in stent thrombosis , 2000, Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions.

[11]  Tad Hogg,et al.  Distributed control of multiscale microscopic chemical sensor networks , 2008 .

[12]  Istvan J. Majoros,et al.  Poly(amidoamine) Dendrimer-Based Multifunctional Nanoparticles , 2007 .

[13]  K J Parker,et al.  Attenuation of ultrasound: magnitude and frequency dependence for tissue characterization. , 1984, Radiology.

[14]  Robert A. Freitas,et al.  Comprehensive Nanorobotic Control of Human Morbidity and Aging , 2010 .

[15]  Robert A. Freitas,et al.  The Ideal Gene Delivery Vector: Chromallocytes, Cell Repair Nanorobots for Chromosome Replacement Therapy , 2007 .

[16]  D. L. Fry Acute Vascular Endothelial Changes Associated with Increased Blood Velocity Gradients , 1968, Circulation research.

[17]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[18]  S. Martel,et al.  MRI visualization of a single 15 µm navigable imaging agent and future microrobot , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[19]  R Erbel,et al.  Intravascular ultrasound imaging in acute aortic dissection. , 1994, Journal of the American College of Cardiology.

[20]  Don Monroe Micromedicine to the rescue , 2009, CACM.

[21]  B. Behkam,et al.  Bacterial flagella-based propulsion and on/off motion control of microscale objects , 2007 .

[22]  P. Beard,et al.  Measurement of Broadband Temperature-Dependent Ultrasonic Attenuation and Dispersion Using Photoacoustics , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[23]  R Omoto,et al.  Utility of 10 MHz ultrasound catheters in the intraaortic assessment of coronary artery ostial stenoses. , 1996, The American journal of cardiology.

[24]  H. Nyquist Thermal Agitation of Electric Charge in Conductors , 1928 .

[25]  S. Martel,et al.  Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system , 2007 .

[26]  Thommey P. Thomas,et al.  Design and Function of a Dendrimer-Based Therapeutic Nanodevice Targeted to Tumor Cells Through the Folate Receptor , 2002, Pharmaceutical Research.

[27]  James A. Spudich,et al.  How molecular motors work , 1994, Nature.

[28]  M. Win,et al.  Higher-Order Cellular Information Processing with Synthetic RNA Devices , 2008, Science.

[29]  E. Shapiro,et al.  An autonomous molecular computer for logical control of gene expression , 2004, Nature.

[30]  S. N. Kundra Toward the emergence of nanoneurosurgery: part III-nanomedicine: targeted nanotherapy, nanosurgery and progress toward the realization of nanoneurosurgery. , 2008, Neurosurgery.

[31]  P. I. Tsoi Radiation of a pulsating sphere in a viscous medium , 1969 .

[32]  R. Freitas Pharmacytes: an ideal vehicle for targeted drug delivery. , 2006, Journal of nanoscience and nanotechnology.

[33]  J. Ophir,et al.  On the Frequency Dependence of Attenuation in Normal and Fatty Liver , 1983, IEEE Transactions on Sonics and Ultrasonics.

[34]  R. Freitas,et al.  Exploratory design in medical nanotechnology: a mechanical artificial red cell. , 1998, Artificial cells, blood substitutes, and immobilization biotechnology.

[35]  David T. Linker,et al.  Safety of intracoronary ultrasound: data from a Multicenter European Registry. , 1996 .

[36]  S. L. Westcott,et al.  Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. , 2000, Journal of biomedical materials research.

[37]  T. Mallouk,et al.  Powering nanorobots. , 2009, Scientific American.

[38]  H. Rothuizen,et al.  Translating biomolecular recognition into nanomechanics. , 2000, Science.

[39]  Robert F Standaert,et al.  Activation of membrane receptors by a neurotransmitter conjugate designed for surface attachment. , 2005, Biomaterials.

[40]  F. Dunn,et al.  Compilation of empirical ultrasonic properties of mammalian tissues. II. , 1980, The Journal of the Acoustical Society of America.

[41]  Robert A. Freitas,et al.  Nanomedicine, Volume I: Basic Capabilities , 1999 .

[42]  Margaret L. Brandeau,et al.  Optimal Localization by Pointing Off Axis , 2010 .

[43]  Raoul Kopelman,et al.  Targeted gold nanoparticles enable molecular CT imaging of cancer. , 2008, Nano letters.

[44]  Philippe Souères,et al.  Modal Analysis Based Beamforming for Nearfield or Farfield Speaker Localization in Robotics , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[45]  F Dunn,et al.  Acoustic properties of egg yolk and albumen in the frequency range 20-400 MHz. , 1997, The Journal of the Acoustical Society of America.

[46]  C L Christman,et al.  Biological effects of ultrasound. , 1983, Women & health.

[47]  S. Martel,et al.  Flagellated bacterial nanorobots for medical interventions in the human body , 2008, 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics.

[48]  Tuan Vo-Dinh,et al.  Nanoprobes and nanobiosensors for monitoring and imaging individual living cells. , 2006, Nanomedicine : nanotechnology, biology, and medicine.

[49]  E. Andrianantoandro,et al.  Synthetic biology: new engineering rules for an emerging discipline , 2006, Molecular systems biology.

[50]  Milica Stojanovic,et al.  On the relationship between capacity and distance in an underwater acoustic communication channel , 2006, Underwater Networks.

[51]  Brenda Arnold Diagnostic Ultrasonics: Principles and Use of Instruments , 1977 .

[52]  Editors , 1986, Brain Research Bulletin.

[53]  Carlo D. Montemagno,et al.  Constructing nanomechanical devices powered by biomolecular motors , 1999 .

[54]  D. Sretavan,et al.  Microscale Surgery on Single Axons , 2005 .

[55]  Lisa Brannon-Peppas,et al.  Micro- and nanofabrication methods in nanotechnological medical and pharmaceutical devices , 2006, International journal of nanomedicine.

[56]  Joel Moser,et al.  Subnanometer Motion of Cargoes Driven by Thermal Gradients Along Carbon Nanotubes , 2008, Science.

[57]  M. Minnarert,et al.  Musical air-bubbles and the sound of running water , 1933 .

[58]  Tad Hogg,et al.  Chemical Power for Microscopic Robots in Capillaries , 2009, Nanomedicine : nanotechnology, biology, and medicine.

[59]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[60]  Bernard Widrow,et al.  A comparison of adaptive algorithms based on the methods of steepest descent and random search , 1976 .

[61]  D B Dusenbery,et al.  Spatial sensing of stimulus gradients can be superior to temporal sensing for free-swimming bacteria. , 1998, Biophysical journal.

[62]  S. Doniach Biological Physics: Energy, Information, Life , 2003 .

[63]  Xudong Wang,et al.  Waves Direct-Current Nanogenerator Driven by Ultrasonic , 2008 .

[64]  Kurt Wiesenfeld,et al.  Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs , 1995, Nature.

[65]  Francesco Zerbetto,et al.  Macroscopic transport by synthetic molecular machines , 2005, Nature materials.

[66]  Kelly Morris,et al.  Macrodoctor, come meet the nanodoctors , 2001, The Lancet.

[67]  Zigmond Sh Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. , 1977 .

[68]  H. Craighead Nanoelectromechanical systems. , 2000, Science.

[69]  James R. Baker,et al.  The Synthesis and Testing of Anti-Cancer Therapeutic Nanodevices , 2001 .

[70]  David H. Gracias,et al.  Toward a miniaturized mechanical surgeon , 2009 .

[71]  R. Siegel,et al.  Intravascular therapeutic ultrasound thrombolysis in acute myocardial infarctions. , 1997, The American journal of cardiology.

[72]  Kazushi Ishiyama,et al.  Magnetic micromachines for medical applications , 2002 .

[73]  Stewart C. Bushong,et al.  Diagnostic Ultrasound: Physics, Biology, and Instrumentation , 1999 .

[74]  W D O'Brien,et al.  Frequency dependence of tissue attenuation measured by acoustic microscopy. , 1989, The Journal of the Acoustical Society of America.

[75]  Robert A. Freitas,et al.  A Minimal Toolset for Positional Diamond Mechanosynthesis , 2008 .

[76]  S. Chien,et al.  Chapter 26 – Biophysical Behavior of Red Cells in Suspensions , 1975 .

[77]  Dan Ferber,et al.  Microbes Made to Order , 2004, Science.

[78]  I. Hunter,et al.  Neuro-vascular central nervous recording/stimulating system: Using nanotechnology probes , 2005 .

[79]  Robert A. Freitas,et al.  Computational Tasks in Medical Nanorobotics , 2009 .

[80]  Antonio Amodeo,et al.  Nano- and microrobotics: how far is the reality? , 2008, Expert review of anticancer therapy.

[81]  R. A. Silverman,et al.  Special functions and their applications , 1966 .

[82]  R Erbel,et al.  Initial experience with a steerable intravascular ultrasound catheter in the aorta and pulmonary artery. , 1995, American journal of cardiac imaging.

[83]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[84]  Lloyd M. Smith Nanotechnology: Molecular robots on the move , 2010, Nature.

[85]  Tad Hogg,et al.  Coordinating microscopic robots in viscous fluids , 2007, Autonomous Agents and Multi-Agent Systems.

[86]  T. Hogg,et al.  Mobile microscopic sensors for high resolution in vivo diagnostics. , 2006, Nanomedicine : nanotechnology, biology, and medicine.

[87]  Stoddart,et al.  Electronically configurable molecular-based logic gates , 1999, Science.

[88]  A. Fetter,et al.  Theoretical mechanics of particles and continua , 1980 .

[89]  M. Minnaert XVI.On musical air-bubbles and the sounds of running water , 1933 .

[90]  Zhong Lin Wang,et al.  Direct-Current Nanogenerator Driven by Ultrasonic Waves , 2007, Science.

[91]  F Mondada,et al.  Social Integration of Robots into Groups of Cockroaches to Control Self-Organized Choices , 2007, Science.

[92]  James H Marden,et al.  Molecules, muscles, and machines: Universal performance characteristics of motors , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[93]  Bradford G. Orr,et al.  Tapping Mode Atomic Force Microscopy Investigation of Poly(amidoamine) Core−Shell Tecto(dendrimers) Using Carbon Nanoprobes , 2002 .

[94]  J L West,et al.  Applications of nanotechnology to biotechnology commentary. , 2000, Current opinion in biotechnology.

[95]  P. Yock,et al.  Intravascular ultrasound: novel pathophysiological insights and current clinical applications. , 2001, Circulation.

[96]  James A. Wilson,et al.  Principles of Animal Physiology , 1972 .

[97]  N. Fiala The greenhouse hamburger. , 2009, Scientific American.

[98]  Tad Hogg,et al.  Controlling Tiny Multi-Scale Robots for Nerve Repair , 2005, AAAI.

[99]  H. Craighead,et al.  Powering an inorganic nanodevice with a biomolecular motor. , 2000, Science.

[100]  Gary W. Elko,et al.  A highly scalable spherical microphone array based on an orthonormal decomposition of the soundfield , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[101]  J. Howard,et al.  Molecular motors: structural adaptations to cellular functions , 1997, Nature.