A Practical Guide to Training Restricted Boltzmann Machines

Restricted Boltzmann machines (RBMs) have been used as generative models of many different types of data. RBMs are usually trained using the contrastive divergence learning procedure. This requires a certain amount of practical experience to decide how to set the values of numerical meta-parameters. Over the last few years, the machine learning group at the University of Toronto has acquired considerable expertise at training RBMs and this guide is an attempt to share this expertise with other machine learning researchers.

[1]  Geoffrey E. Hinton Relaxation and its role in vision , 1977 .

[2]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Paul Smolensky,et al.  Information processing in dynamical systems: foundations of harmony theory , 1986 .

[4]  David Haussler,et al.  Unsupervised learning of distributions on binary vectors using two layer networks , 1991, NIPS 1991.

[5]  Geoffrey E. Hinton,et al.  The EM algorithm for mixtures of factor analyzers , 1996 .

[6]  Yee Whye Teh,et al.  Rate-coded Restricted Boltzmann Machines for Face Recognition , 2000, NIPS.

[7]  Javier R. Movellan,et al.  DIFFUSION NETWORKS , PRODUCT OF EXPERTS , AND FACTOR ANALYSIS , 2001 .

[8]  Javier R. Movellan,et al.  Diffusion Networks, Products of Experts, and Factor Analysis , 2001 .

[9]  Geoffrey E. Hinton Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.

[10]  Geoffrey E. Hinton,et al.  Exponential Family Harmoniums with an Application to Information Retrieval , 2004, NIPS.

[11]  Philipp Slusallek,et al.  Introduction to real-time ray tracing , 2005, SIGGRAPH Courses.

[12]  Miguel Á. Carreira-Perpiñán,et al.  On Contrastive Divergence Learning , 2005, AISTATS.

[13]  Geoffrey E. Hinton,et al.  Modeling Human Motion Using Binary Latent Variables , 2006, NIPS.

[14]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[15]  Yee Whye Teh,et al.  Unsupervised Discovery of Nonlinear Structure Using Contrastive Backpropagation , 2006, Cogn. Sci..

[16]  Geoffrey E. Hinton,et al.  Restricted Boltzmann machines for collaborative filtering , 2007, ICML '07.

[17]  Geoffrey E. Hinton,et al.  To recognize shapes, first learn to generate images. , 2007, Progress in brain research.

[18]  John F. Kalaska,et al.  Computational neuroscience : theoretical insights into brain function , 2007 .

[19]  Ruslan Salakhutdinov,et al.  On the quantitative analysis of deep belief networks , 2008, ICML '08.

[20]  Tijmen Tieleman,et al.  Training restricted Boltzmann machines using approximations to the likelihood gradient , 2008, ICML '08.

[21]  Geoffrey E. Hinton,et al.  Using fast weights to improve persistent contrastive divergence , 2009, ICML '09.

[22]  Geoffrey E. Hinton,et al.  3D Object Recognition with Deep Belief Nets , 2009, NIPS.

[23]  Geoffrey E. Hinton,et al.  Replicated Softmax: an Undirected Topic Model , 2009, NIPS.

[24]  Geoffrey E. Hinton,et al.  Deep Belief Networks for phone recognition , 2009 .

[25]  Geoffrey E. Hinton,et al.  Phone recognition using Restricted Boltzmann Machines , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[26]  Ilya Sutskever,et al.  On the Convergence Properties of Contrastive Divergence , 2010, AISTATS.

[27]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.