Progress in and potential of liquid phase crystallized silicon solar cells

Abstract Liquid phase crystallization of silicon (LPC-Si) offers great potential for high-quality Si films and a cost effective fabrication technique for thin crystalline silicon solar cells on glass. In this work, we report on the progress on LPC-silicon at HZB in the past years. Beginning with a brief description of the fabrication process, we summarize the work on the different contact systems developed for these absorbers before focusing on the interdigitated back contact architecture on which the highest efficiencies were reported. State-of-the art cells form the basis for a detailed discussion of the status of this technology. We investigate the current loss mechanisms and explore the potential for further improvement. Finally, based on this comprehensive quality assessment, we develop a roadmap to increase the cell efficiencies to wafer-equivalent values.

[1]  S. Hegedus,et al.  Optimization of interdigitated back contact silicon heterojunction solar cells: tailoring hetero‐interface band structures while maintaining surface passivation , 2011 .

[2]  Bernd Rech,et al.  Polycrystalline silicon heterojunction thin-film solar cells on glass exhibiting 582 mV open-circuit voltage , 2013 .

[3]  B. Rech,et al.  Periodic and Random Substrate Textures for Liquid-Phase Crystallized Silicon Thin-Film Solar Cells , 2017, IEEE Journal of Photovoltaics.

[4]  L. Korte,et al.  Passivation of Textured Silicon Wafers:Influence of Pyramid Size Distribution, a-Si:H Deposition Temperature, and Post-treatment , 2013 .

[5]  B. Rech,et al.  Analysis of photo-current potentials and losses in thin film crystalline silicon solar cells , 2015 .

[6]  Martin A. Green,et al.  Polycrystalline silicon on glass for thin-film solar cells , 2009 .

[7]  Miro Zeman,et al.  Modulated surface textures for enhanced light trapping in thin-film silicon solar cells , 2010 .

[8]  Bernd Rech,et al.  Balance of optical, structural, and electrical properties of textured liquid phase crystallized Si solar cells , 2015 .

[9]  B. Rech,et al.  Impact of Dielectric Layers on Liquid-Phase Crystallized Silicon Solar Cells , 2018, IEEE Journal of Photovoltaics.

[10]  D. A. Clugston,et al.  Crystalline silicon on glass (CSG) thin-film solar cell modules , 2004 .

[11]  J. Dore,et al.  Efficiency and stability enhancement of laser-crystallized polycrystalline silicon thin-film solar cells by laser firing of the absorber contacts , 2014 .

[12]  Wyatt K. Metzger,et al.  The role of amorphous silicon and tunneling in heterojunction with intrinsic thin layer (HIT) solar cells , 2009 .

[13]  Bernd Rech,et al.  Towards monocrystalline silicon thin films grown on glass by liquid phase crystallization , 2015 .

[14]  W. Seifert,et al.  Analysis of Electron-Beam Crystallized Large Grained Si Films on Glass Substrate by EBIC, EBSD and PL , 2011 .

[15]  Wei Yan,et al.  Influence of Surface Morphology on the Effective Lifetime and Performance of Silicon Heterojunction Solar Cell , 2015 .

[16]  B. Rech,et al.  Influence of Hydrogen Plasma on the Defect Passivation of Polycrystalline Si Thin Film Solar Cells , 2009 .

[17]  B. Rech,et al.  Silicon Solar Cells on Glass with Power Conversion Efficiency above 13% at Thickness below 15 Micrometer , 2017, Scientific Reports.

[18]  S. Glunz,et al.  Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells , 2013, IEEE Journal of Photovoltaics.

[19]  Martin A. Green,et al.  Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients , 2008 .

[20]  B. Rech,et al.  Liquid phase crystallized silicon – A holistic absorber quality assessment , 2017, Solar Energy Materials and Solar Cells.

[21]  B. Rech,et al.  Smooth anti-reflective three-dimensional textures for liquid phase crystallized silicon thin-film solar cells on glass , 2016, Scientific Reports.

[22]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[23]  B. Rech,et al.  Polycrystalline silicon thin-film solar cells: Status and perspectives , 2013 .

[24]  Optimized Metallization for Interdigitated Back Contact Silicon Heterojunction Solar Cells , 2017 .

[25]  G. Jia,et al.  Polycrystalline silicon thin-film solar cells prepared by layered laser crystallization with 540mV open circuit voltage , 2014 .

[26]  A. Polman,et al.  Plasmonic scattering back reflector for light trapping in flat nano-crystalline silicon solar cells , 2016 .

[27]  Christophe Ballif,et al.  Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells , 2013 .

[28]  B. Rech,et al.  Properties of Liquid Phase Crystallized Interdigitated Back-contact Solar Cells on Glass , 2015 .

[29]  B. Rech,et al.  Impact of dislocations and dangling bond defects on the electrical performance of crystalline silicon thin films , 2014 .

[30]  B. Stannowski,et al.  Influence of Chemical Composition and Structure in Silicon Dielectric Materials on Passivation of Thin Crystalline Silicon on Glass. , 2015, ACS applied materials & interfaces.

[31]  O. Tabata,et al.  Anisotropic etching of silicon in TMAH solutions , 1992 .

[32]  Martin A. Green,et al.  Progress in Laser-Crystallized Thin-Film Polycrystalline Silicon Solar Cells: Intermediate Layers, Light Trapping, and Metallization , 2014, IEEE Journal of Photovoltaics.

[33]  Jerry G. Fossum,et al.  A physical model for the dependence of carrier lifetime on doping density in nondegenerate silicon , 1982 .

[34]  Andrew C. Martin,et al.  Eagle XG® glass, optical constants from 230 to 1690 nm (0.73 - 5.39 eV) by spectroscopic ellipsometry , 2016 .

[35]  B. Rech,et al.  Potential of interdigitated back-contact silicon heterojunction solar cells for liquid phase crystallized silicon on glass with efficiency above 14% , 2018 .

[36]  B. Rech,et al.  Interface Engineering for Liquid-Phase Crystallized-Silicon Solar Cells on Glass , 2017 .

[37]  M. Zeman,et al.  GenPro4 Optical Model for Solar Cell Simulation and Its Application to Multijunction Solar Cells , 2017, IEEE Journal of Photovoltaics.

[38]  B. Rech,et al.  PECVD Intermediate and Absorber Layers Applied in Liquid-Phase Crystallized Silicon Solar Cells on Glass Substrates , 2014, IEEE Journal of Photovoltaics.

[39]  B. Rech,et al.  Silicon Thin-Film Solar Cells on Glass With Open-Circuit Voltages Above 620 mV Formed by Liquid-Phase Crystallization , 2014, IEEE Journal of Photovoltaics.

[40]  B. Stannowski,et al.  Rear-side All-by-Laser Point-contact Scheme for liquid-phase-crystallized silicon on glass solar cells , 2015 .

[41]  B. Rech,et al.  Influence of the precursor layer composition and deposition processes on the electronic quality of liquid phase crystallized silicon absorbers , 2018 .