The Effect of Band-Gap on TiO2 Thin Film Considering Various Parameters

The aim of this work is to measure the effect of band-gap on TiO2 thin films by changing tetrabutylorthotitanate (TBOT), diethanolamine (DEA), and temperature. The sol-gel method is experimentally introduced to find out the better band-gap of TiO2 thin films by varying the concentration of TBOT (4 ml to 10 ml), DEA (2 ml to 5 ml), and temperature (350°C to 650°C). With the help of an ultraviolet-visible spectrophotometer for the wavelength of 300-900 nm, these thin films are characterized concerning optical properties (transmittance spectra, absorbance spectra, direct band-gap, and indirect band-gap). The direct and indirect band-gaps are found 3.38 eV and 3.25 eV respectively, which are close to or within the standard band-gap range of TiO2 (3.2 eV to 3.35 eV) and are found at 8 ml TBOT, 3 ml DEA, and a temperature of 550°C.

[1]  M. Zakerhamidi,et al.  Changes of the TiO2 thin film electro-optical properties in the Ar and N2 glow discharge plasma due to effects of the electric field in plasma's sheath , 2021, Physica B: Condensed Matter.

[2]  P. Koshy,et al.  Mo-doped, Cr-Doped, and Mo–Cr codoped TiO2 thin-film photocatalysts by comparative sol-gel spin coating and ion implantation , 2021, International Journal of Hydrogen Energy.

[3]  Mehmet M. Dalkilic,et al.  Predicting Atom Types of Anatase TiO2 Nanoparticles with Machine Learning , 2021 .

[4]  M. Mozammel,et al.  Hierarchical architecture of a superhydrophobic Cd-Si co-doped TiO2 thin film , 2020 .

[5]  S. A. Mayén-Hernández,et al.  Synthesis and characterization of graphene oxide - TiO2 thin films by sol-gel for photocatalytic applications , 2020 .

[6]  Xiaojie Xu,et al.  Machine Learning Band Gaps of Doped-TiO2 Photocatalysts from Structural and Morphological Parameters , 2020, ACS omega.

[7]  F. Kara,et al.  Evaluation of electronic transport and optical response of two-dimensional Fe-doped TiO2 thin films for photodetector applications , 2020 .

[8]  M. Ozkan,et al.  Suppression of the Shuttle Effect in Li–S Batteries via Magnetron Sputtered TiO2 Thin Film at the Electrode–Electrolyte Interface , 2020 .

[9]  D. Dionysiou,et al.  Reuse of TiO2-based catalyst for solar driven water treatment; thermal and chemical reactivation , 2017 .

[10]  M. Mizuhata,et al.  Membrane modification by liquid phase deposition using small amount of TiO2 for high-temperature operation of polymer electrolyte fuel cells , 2013 .

[11]  Dionysios D. Dionysiou,et al.  Enhanced visible light photocatalytic activity of CN-codoped TiO2 films for the degradation of microcystin-LR , 2013 .

[12]  Yucheng He,et al.  Controllable synthesis of brookite/anatase/rutile TiO2 nanocomposites and single-crystalline rutile nanorods array , 2012 .

[13]  K. Amine,et al.  Tailored Preparation Methods of TiO2 Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties† , 2010 .

[14]  Md. Faruk Hossain,et al.  Effect of structure and surface morphology of sol-gel derived TiO2 photoelectrode on the performance of dye-sensitized solar cells , 2008 .

[15]  S. Sen,et al.  Influence of calcination ambient and film thickness on the optical and structural properties of sol-gel TiO2 thin films , 2007 .

[16]  Fumin Wang,et al.  Preparation of TiO2 nanocrystalline with 3–5 nm and application for dye-sensitized solar cell , 2006 .

[17]  Jaesung Song,et al.  Photocatalytic behaviors and structural characterization of nanocrystalline Fe-doped TiO2 synthesized by mechanical alloying , 2004 .

[18]  Jyh-Ming Ting,et al.  Growth of single crystal ZnO nanowires using sputter deposition , 2003 .

[19]  Ashutosh Kumar Singh,et al.  Investigation and optimization of nanostructured TiO2 photoelectrode in regard to hydrogen production through photoelectrochemical process , 2003 .

[20]  Akira Fujishima,et al.  Photocatalytic Degradation of Gaseous Formaldehyde Using TiO2 Film , 1998 .

[21]  S. Woo,et al.  Preparation and properties of amorphous TiO2 thin films by plasma enhanced chemical vapor deposition , 1994 .

[22]  Photonics, Plasmonics and Information Optics , 2022 .