Blueprint for a microwave trapped ion quantum computer

Design to build a trapped ion quantum computer with modules connected by ion transport and voltage-driven quantum gate technology. The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion–based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation–based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error–threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects.

[1]  A. Walther,et al.  Experimental realization of fast ion separation in segmented Paul traps , 2014 .

[2]  Curtis Volin,et al.  Reliable transport through a microfabricated X-junction surface-electrode ion trap , 2012, 1210.3655.

[3]  Peter Maunz,et al.  High speed, high fidelity detection of an atomic hyperfine qubit. , 2013, Optics letters.

[4]  W. Marsden I and J , 2012 .

[5]  S. Olmschenk,et al.  Ion trap in a semiconductor chip , 2006 .

[6]  M. B. Plenio,et al.  Quantum gates and memory using microwave-dressed states , 2011, Nature.

[7]  Andrew G. Glen,et al.  APPL , 2001 .

[8]  Winfried K. Hensinger,et al.  Microfabricated ion traps , 2011, 1101.3207.

[9]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[10]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[11]  Zach DeVito,et al.  Opt , 2017 .

[12]  Robert S. Patti,et al.  Three-Dimensional Integrated Circuits and the Future of System-on-Chip Designs , 2006, Proceedings of the IEEE.

[13]  R. B. Blakestad,et al.  Microfabricated surface-electrode ion trap for scalable quantum information processing. , 2006, Physical review letters.

[14]  W K Hensinger,et al.  Simple manipulation of a microwave dressed-state ion qubit. , 2013, Physical review letters.

[15]  David Hucul,et al.  On the transport of atomic ions in linear and multidimensional ion trap arrays , 2007, Quantum information & computation.

[16]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[17]  A Retzker,et al.  Trapped-Ion Quantum Logic with Global Radiation Fields. , 2016, Physical review letters.

[18]  Tommaso Calarco,et al.  Colloquium: Trapped ions as quantum bits: Essential numerical tools , 2009, 0912.0196.

[19]  A. Varon,et al.  A trapped-ion-based quantum byte with 10−5 next-neighbour cross-talk , 2014, Nature Communications.

[20]  Curtis Volin,et al.  In-vacuum active electronics for microfabricated ion traps. , 2014, The Review of scientific instruments.

[21]  Simon C. Benjamin,et al.  Freely Scalable Quantum Technologies using Cells of 5-to-50 Qubits with Very Lossy and Noisy Photonic Links , 2014, 1406.0880.

[22]  K. R. Brown,et al.  Microwave quantum logic gates for trapped ions , 2011, Nature.

[23]  R. Ozeri,et al.  Universal gate-set for trapped-ion qubits using a narrow linewidth diode laser , 2015, 1505.02503.

[24]  F. Mintert,et al.  Ion-trap quantum logic using long-wavelength radiation. , 2001, Physical review letters.

[25]  J M Amini,et al.  Trapped-ion quantum logic gates based on oscillating magnetic fields. , 2008, Physical review letters.

[26]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[27]  R. A. Matula Electrical resistivity of copper, gold, palladium, and silver , 1979 .

[28]  Dexter Kozen,et al.  New , 2020, MFPS.

[29]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[30]  C. Monroe,et al.  Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects , 2012, 1208.0391.

[31]  S. Webster,et al.  Ground-State Cooling of a Trapped Ion Using Long-Wavelength Radiation. , 2015, Physical review letters.

[32]  M. Johanning,et al.  Designer spin pseudomolecule implemented with trapped ions in a magnetic gradient. , 2011, Physical review letters.

[33]  I. V. Inlek,et al.  Modular entanglement of atomic qubits using photons and phonons , 2014, Nature Physics.

[34]  G. A. Slack,et al.  Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point , 1964 .

[35]  Andrew M. Steane Efficient fault-tolerant quantum computing , 1999, Nature.

[36]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[37]  A Retzker,et al.  Ultrasensitive Magnetometer using a Single Atom. , 2014, Physical review letters.

[38]  Winfried K. Hensinger,et al.  Multi-qubit gate with trapped ions for microwave and laser-based implementation , 2015, 1504.02960.

[39]  A Walther,et al.  Controlling fast transport of cold trapped ions. , 2012, Physical review letters.

[40]  W. Hensinger,et al.  On the application of radio frequency voltages to ion traps via helical resonators , 2011, 1106.5013.

[41]  N. Linke,et al.  High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. , 2014, Physical review letters.

[42]  N. Linke,et al.  High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. , 2015, Physical review letters.

[43]  Anthony F. Bernhardt,et al.  Microchannel heatsink with liquid-nitrogen cooling , 1993, Optics & Photonics.

[44]  Hidetoshi Otono,et al.  Study of MPPC at liquid nitrogen temperature , 2007 .

[45]  Isaac L. Chuang,et al.  Transparent ion trap with integrated photodetector , 2012, 1212.1443.

[46]  Peter W. Shor,et al.  Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[47]  J. Britton,et al.  Toward scalable ion traps for quantum information processing , 2009, 0909.2464.

[48]  E. Knill,et al.  Single-qubit-gate error below 10 -4 in a trapped ion , 2011, 1104.2552.

[49]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[50]  Jean-Luis Lizon Liquid nitrogen pre-cooling of large infrared instrument at ESO , 2010, Astronomical Telescopes + Instrumentation.

[51]  Gilbert De Mey,et al.  Influence of substrate thickness on thermal impedance of microelectronic structures , 2007, Microelectron. Reliab..

[52]  F. Schmidt-Kaler,et al.  Robust state preparation of a single trapped ion by adiabatic passage , 2005, quant-ph/0508159.

[53]  T. R. Tan,et al.  Coherent diabatic ion transport and separation in a multizone trap array. , 2012, Physical review letters.

[54]  Winfried K. Hensinger,et al.  Optimum electrode configurations for fast ion separation in microfabricated surface ion traps , 2010, 1007.3542.

[55]  Wojciech H. Zurek,et al.  Sympathetic cooling of trapped ions for quantum logic , 2000 .