A Statistical Decision-Theoretic Framework for Social Choice

In this paper, we take a statistical decision-theoretic viewpoint on social choice, putting a focus on the decision to be made on behalf of a system of agents. In our framework, we are given a statistical ranking model, a decision space, and a loss function defined on (parameter, decision) pairs, and formulate social choice mechanisms as decision rules that minimize expected loss. This suggests a general framework for the design and analysis of new social choice mechanisms. We compare Bayesian estimators, which minimize Bayesian expected loss, for the Mallows model and the Condorcet model respectively, and the Kemeny rule. We consider various normative properties, in addition to computational complexity and asymptotic behavior. In particular, we show that the Bayesian estimator for the Condorcet model satisfies some desired properties such as anonymity, neutrality, and monotonicity, can be computed in polynomial time, and is asymptotically different from the other two rules when the data are generated from the Condorcet model for some ground truth parameter.

[1]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[2]  Ariel D. Procaccia,et al.  When do noisy votes reveal the truth? , 2013, EC '13.

[3]  J. Banks,et al.  Information Aggregation, Rationality, and the Condorcet Jury Theorem , 1996, American Political Science Review.

[4]  Nicolas de Condorcet Essai Sur L'Application de L'Analyse a la Probabilite Des Decisions Rendues a la Pluralite Des Voix , 2009 .

[5]  Edith Hemaspaandra,et al.  The complexity of Kemeny elections , 2005, Theor. Comput. Sci..

[6]  Ariel D. Procaccia,et al.  Modal Ranking: A Uniquely Robust Voting Rule , 2014, AAAI.

[7]  S. Shapiro,et al.  Mathematics without Numbers , 1993 .

[8]  Marcus Pivato,et al.  Voting rules as statistical estimators , 2013, Soc. Choice Welf..

[9]  Abraham Wald,et al.  Statistical Decision Functions , 1951 .

[10]  Pu-Jen Cheng,et al.  Learning to rank from Bayesian decision inference , 2009, CIKM.

[11]  H. Young Condorcet's Theory of Voting , 1988, American Political Science Review.

[12]  Craig Boutilier,et al.  Optimal social choice functions: A utilitarian view , 2015, Artif. Intell..

[13]  Ariel D. Procaccia,et al.  Better Human Computation Through Principled Voting , 2013, AAAI.

[14]  Vincent Conitzer,et al.  A Maximum Likelihood Approach towards Aggregating Partial Orders , 2011, IJCAI.

[15]  Ariel D. Procaccia,et al.  A Maximum Likelihood Approach For Selecting Sets of Alternatives , 2012, UAI.

[16]  Ulrich Endriss,et al.  Ontology merging as social choice: judgment aggregation under the open world assumption , 2012, J. Log. Comput..

[17]  W. Greene,et al.  计量经济分析 = Econometric analysis , 2009 .

[18]  Koichi Miyasawa,et al.  On the statistical decision function I. , 1950 .

[19]  H. Young,et al.  A Consistent Extension of Condorcet’s Election Principle , 1978 .

[20]  Craig Boutilier,et al.  Learning Mallows Models with Pairwise Preferences , 2011, ICML.

[21]  Ariel D. Procaccia,et al.  The Distortion of Cardinal Preferences in Voting , 2006, CIA.

[22]  Craig Boutilier,et al.  The unavailable candidate model: a decision-theoretic view of social choice , 2010, EC '10.

[23]  Ya Zhang,et al.  Active Learning for Ranking through Expected Loss Optimization , 2010, IEEE Transactions on Knowledge and Data Engineering.

[24]  Sandip Sen,et al.  Voting for movies: the anatomy of a recommender system , 1999, AGENTS '99.

[25]  David C. Mcgarvey A THEOREMI ON THE CONSTRUCTION OF VOTING PARADOXES , 1953 .

[26]  David C. Parkes,et al.  Random Utility Theory for Social Choice , 2012, NIPS.

[27]  Moni Naor,et al.  Rank aggregation methods for the Web , 2001, WWW '01.

[28]  Lirong Xia,et al.  Deciphering Young’s interpretation of Condorcet’s model , 2014 .

[29]  Ariel D. Procaccia,et al.  Voting almost maximizes social welfare despite limited communication , 2010, Artif. Intell..

[30]  Shmuel Nitzan,et al.  The significance of independent decisions in uncertain dichotomous choice situations , 1984 .

[31]  Vincent Conitzer,et al.  Aggregating preferences in multi-issue domains by using maximum likelihood estimators , 2010, AAMAS.

[32]  P. Fishburn Condorcet Social Choice Functions , 1977 .

[33]  Craig Boutilier,et al.  Probabilistic and Utility-theoretic Models in Social Choice : Challenges for Learning , Elicitation , and Manipulation , 2011 .

[34]  C. L. Mallows NON-NULL RANKING MODELS. I , 1957 .

[35]  Vincent Conitzer,et al.  Common Voting Rules as Maximum Likelihood Estimators , 2005, UAI.