M theory as a holographic field theory

We suggest that M theory could be nonperturbatively equivalent to a local quantum field theory. More precisely, we present a “renormalizable” gauge theory in eleven dimensions, and show that it exhibits various properties expected of quantum M theory, most notably the holographic principle of ’t Hooft and Susskind. The theory also satisfies Mach’s principle: A macroscopically large space-time (and the inertia of low-energy excitations) is generated by a large number of “partons” in the microscopic theory. We argue that at low energies in large eleven dimensions, the theory should be effectively described by eleven-dimensional supergravity. This effective description breaks down at much lower energies than naively expected, precisely when the system saturates the Bekenstein bound on energy density. We show that the number of partons scales like the area of the surface surrounding the system, and discuss how this holographic reduction of degrees of freedom affects the cosmological constant problem. We propose the holographic field theory as a candidate for a covariant, nonperturbative formulation of quantum M theory.

[1]  J. Zanelli,et al.  New gauge supergravity in seven and eleven dimensions , 1997, hep-th/9710180.

[2]  L. Susskind,et al.  Review of matrix theory , 1997, hep-th/9712072.

[3]  N. Seiberg Why Is the Matrix Model Correct , 1997, hep-th/9710009.

[4]  A. Sen D0-branes on $T^n$ and matrix theory , 1997, hep-th/9709220.

[5]  M. Henneaux,et al.  No cosmological D = 11 supergravity , 1997, hep-th/9704131.

[6]  L. Susskind Another Conjecture about M(atrix) Theory , 1997, hep-th/9704080.

[7]  I. Bars A case for 14 dimensions , 1997, hep-th/9704054.

[8]  L. Susskind,et al.  M theory as a matrix model: A Conjecture , 1996, hep-th/9610043.

[9]  E. Witten On flux quantization in M-theory and the effective action , 1996, hep-th/9609122.

[10]  S. Carlip The statistical mechanics of the three-dimensional euclidean black hole , 1996, gr-qc/9606043.

[11]  P. Townsend Four lectures on M theory , 1996, hep-th/9612121.

[12]  P. Bouwknegt Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics , 1996 .

[13]  S. Shenker,et al.  D-branes and short distances in string theory , 1996, hep-th/9608024.

[14]  I. Bars S-Theory , 1996, hep-th/9607112.

[15]  E. Witten,et al.  Eleven-dimensional supergravity on a manifold with boundary , 1996, hep-th/9603142.

[16]  Kabat,et al.  Zero-Brane Quantum Mechanics. , 1996, Physical Review Letters.

[17]  G. Ferretti,et al.  D particle dynamics and bound states , 1996, hep-th/9603081.

[18]  T. Banks SUSY Breaking, Cosmology, Vacuum Selection and the Cosmological Constant in String Theory , 1996 .

[19]  Zanelli,et al.  Higher dimensional Chern-Simons supergravity. , 1996, Physical review. D, Particles and fields.

[20]  Edward Witten,et al.  Heterotic and type I string dynamics from eleven-dimensions , 1995, hep-th/9510209.

[21]  J. Schwarz The Power of M Theory , 1995, hep-th/9510086.

[22]  A. P. Balachandran,et al.  Edge states in gravity and black hole physics , 1994, gr-qc/9412019.

[23]  G. ’t Hooft The Scattering Matrix Approach for the Quantum Black Hole an Overview , 1996 .

[24]  G. Hooft Quantum information and information loss in general relativity , 1995, gr-qc/9509050.

[25]  P. Townsend P-brane democracy , 1995, hep-th/9507048.

[26]  E. Witten String theory dynamics in various dimensions , 1995, hep-th/9503124.

[27]  P. Townsend The eleven-dimensional supermembrane revisited , 1995, hep-th/9501068.

[28]  Zanelli Quantization of the gravitational constant in odd dimensions. , 1995, Physical review. D, Particles and fields.

[29]  A. Zee Quantum hall fluids , 1995, cond-mat/9501022.

[30]  P. Townsend,et al.  Unity of superstring dualities , 1994, hep-th/9410167.

[31]  Julian Barbour,et al.  Mach's principle : from Newton's bucket to quantum gravity , 1995 .

[32]  A. P. Balachandran,et al.  EDGE STATES IN GAUGE THEORIES: THEORY, INTERPRETATIONS AND PREDICTIONS , 1994, hep-th/9411164.

[33]  L. Susskind The world as a hologram , 1994, hep-th/9409089.

[34]  J. Bekenstein,et al.  Entropy bounds and black hole remnants. , 1993, Physical review. D, Particles and fields.

[35]  J. Zanelli Quantization of the Gravitational Constant in Odd-Dimensional Gravity , 1994 .

[36]  G. Hooft Dimensional Reduction in Quantum Gravity , 1993, gr-qc/9310026.

[37]  Zanelli,et al.  Black hole in three-dimensional spacetime. , 1992, Physical review letters.

[38]  P. Fré,et al.  Supergravity and Superstrings: A Geometric Perspective , 1991 .

[39]  E. Fradkin,et al.  Field theories of condensed matter systems , 1991 .

[40]  D. W. Lewis Matrix theory , 1991 .

[41]  Frank Wilczek,et al.  Fractional statistics and anyon superconductivity , 1990 .

[42]  A. Chamseddine Topological gravity and supergravity in various dimensions , 1990 .

[43]  A. Chamseddine Topological gauge theory of gravity in five and all odd dimensions , 1989 .

[44]  Nathan Seiberg,et al.  Remarks on the canonical quantization of the Chern-Simons-Witten theory , 1989 .

[45]  S. Carlip Exact quantum scattering in 2 + 1 dimensional gravity , 1989 .

[46]  Edward Witten,et al.  Quantum field theory and the Jones polynomial , 1989 .

[47]  E. Witten Topology Changing Amplitudes in (2+1)-Dimensional Gravity , 1989 .

[48]  田中 正,et al.  SUPERSTRING THEORY , 1989, The Lancet.

[49]  Edward Witten,et al.  (2+1)-Dimensional Gravity as an Exactly Soluble System , 1988 .

[50]  A. Achúcarro,et al.  A Chern-Simons Action for Three-Dimensional anti-De Sitter Supergravity Theories , 1986 .

[51]  van Nieuwenhuizen P Three-dimensional conformal supergravity and Chern-Simons terms. , 1985, Physical review. D, Particles and fields.

[52]  P. Fré Comments on the 6-index photon in d=11 supergravity and the gauging of free differential algebras , 1984 .

[53]  I. Antoniadis,et al.  On the cosmological constant problem , 1984 .

[54]  P. Nieuwenhuizen,et al.  INVARIANCE OF ACTIONS, RHEONOMY AND THE NEW MINIMAL N=1 SUPERGRAVITY IN THE GROUP MANIFOLD APPROACH , 1984 .

[55]  P. Nieuwenhuizen,et al.  Gauging of d = 11 supergravity , 1983 .

[56]  A. Proeyen,et al.  N=1 supersymmetry algebras in d=2,3,4 mod 8 , 1982 .

[57]  P. Fré,et al.  Geometric Supergravity in D = 11 and Its Hidden Supergroup , 1981 .

[58]  E. Cremmer,et al.  Supergravity in theory in 11 dimensions , 1978 .