Matrix Transfer Technique for Anomalous Diffusion Equation Involving Fractional Laplacian

Abstract The fractional Laplacian, ( − △ ) s , s ∈ ( 0 , 1 ) , appears in a wide range of physical systems, including Levy flights, some stochastic interfaces, and theoretical physics in connection to the problem of stability of the matter. In this paper, a matrix transfer technique (MTT) is employed combining with spectral/element method to solve fractional diffusion equations involving the fractional Laplacian. The convergence of the MTT method is analyzed by the abstract operator theory. Our method can be applied to solve various fractional equation involving fractional Laplacian on some complex domains. Numerical results indicate exponential convergence in the spatial discretization which is in good agreement with the theoretical analysis.

[1]  Fawang Liu,et al.  Galerkin finite element approximation of symmetric space-fractional partial differential equations , 2010, Appl. Math. Comput..

[2]  Fawang Liu,et al.  A Crank-Nicolson ADI Spectral Method for a Two-Dimensional Riesz Space Fractional Nonlinear Reaction-Diffusion Equation , 2014, SIAM J. Numer. Anal..

[3]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[4]  Louis Dupaigne,et al.  Nonhomogeneous boundary conditions for the spectral fractional Laplacian , 2015, 1509.06275.

[5]  Béla J. Szekeres,et al.  Finite element approximation of fractional order elliptic boundary value problems , 2016, J. Comput. Appl. Math..

[6]  Marlis Hochbruck,et al.  Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005, SIAM J. Numer. Anal..

[7]  Junesang Choi,et al.  Extended k-Gamma and k-Beta Functions of Matrix Arguments , 2020, Mathematics.

[8]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[9]  Fawang Liu,et al.  A Novel High Order Space-Time Spectral Method for the Time Fractional Fokker-Planck Equation , 2015, SIAM J. Sci. Comput..

[10]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[11]  Marino Zennaro,et al.  Unconditional stability of explicit exponential Runge-Kutta methods for semi-linear ordinary differential equations , 2009, Math. Comput..

[12]  Fawang Liu,et al.  Novel Numerical Methods for Solving the Time-Space Fractional Diffusion Equation in Two Dimensions , 2011, SIAM J. Sci. Comput..

[13]  Yeol Je Cho,et al.  Advances in Real and Complex Analysis with Applications , 2017 .

[14]  Fawang Liu,et al.  A finite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reaction–diffusion equations , 2014 .

[15]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[16]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[17]  Mohamed A. Abd El salam,et al.  Matrix computational collocation approach based on rational Chebyshev functions for nonlinear differential equations , 2021, Advances in Difference Equations.

[18]  Alexander I. Saichev,et al.  Fractional kinetic equations: solutions and applications. , 1997, Chaos.

[19]  Praveen Agarwal,et al.  Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation , 2018, Physica A: Statistical Mechanics and its Applications.

[20]  George E. Karniadakis,et al.  Fractional Sturm-Liouville eigen-problems: Theory and numerical approximation , 2013, J. Comput. Phys..

[21]  Liu Yang,et al.  Solvability for fractional p-Laplacian differential equations with multipoint boundary conditions at resonance on infinite interval , 2017 .

[22]  Ricardo H. Nochetto,et al.  A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis , 2013, Found. Comput. Math..

[23]  G. Zaslavsky Chaos, fractional kinetics, and anomalous transport , 2002 .

[24]  A. Balk Anomalous behaviour of a passive tracer in wave turbulence , 2002, Journal of Fluid Mechanics.

[25]  V E Lynch,et al.  Front dynamics in reaction-diffusion systems with Levy flights: a fractional diffusion approach. , 2002, Physical review letters.

[26]  I. Turner,et al.  Numerical Approximation of a Fractional-In-Space Diffusion Equation, I , 2005 .

[27]  A. A. El-Sayed,et al.  A novel Jacobi operational matrix for numerical solution of multi-term variable-order fractional differential equations , 2020, Journal of Taibah University for Science.

[28]  M. Hochbruck,et al.  Exponential Runge--Kutta methods for parabolic problems , 2005 .

[29]  R. Metzler,et al.  Space- and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation , 2002 .

[30]  J. D. Lawson Generalized Runge-Kutta Processes for Stable Systems with Large Lipschitz Constants , 1967 .

[31]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[32]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[33]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[34]  George E. Karniadakis,et al.  Fractional Spectral Collocation Method , 2014, SIAM J. Sci. Comput..

[35]  Nicholas Hale,et al.  An Efficient Implicit FEM Scheme for Fractional-in-Space Reaction-Diffusion Equations , 2012, SIAM J. Sci. Comput..

[36]  F. Izsák,et al.  Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems , 2017, Applications of Mathematics.

[37]  Sigal Gottlieb,et al.  Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.