Hadwiger's conjecture for quasi-line graphs
暂无分享,去创建一个
[1] K. Appel,et al. Every planar map is four colorable. Part II: Reducibility , 1977 .
[2] D. König. Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre , 1916 .
[3] K. Menger. Zur allgemeinen Kurventheorie , 1927 .
[4] Paul D. Seymour,et al. The structure of claw-free graphs , 2005, BCC.
[5] K. Wagner. Über eine Eigenschaft der ebenen Komplexe , 1937 .
[6] K. Appel,et al. Every planar map is four colorable. Part I: Discharging , 1977 .
[7] Maria Chudnovsky,et al. Coloring quasi-line graphs , 2007 .
[8] Robin Thomas,et al. Hadwiger's conjecture forK6-free graphs , 1993, Comb..
[9] Bruce A. Reed,et al. Hadwiger's conjecture for line graphs , 2004, Eur. J. Comb..
[10] K. Appel,et al. Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.
[11] Paul D. Seymour,et al. Claw-free graphs. II. Non-orientable prismatic graphs , 2008, J. Comb. Theory, Ser. B.