Composition-tuned oxidation levels of Pt–Re bimetallic nanoparticles for the etherification of allylic alcohols

[1]  Chunhua Yan,et al.  Moderate oxidation levels of Ru nanoparticles enhance molecular oxygen activation for cross-dehydrogenative-coupling reactions via single electron transfer , 2017 .

[2]  Hyunjoon Song,et al.  Directed C-H Activation and Tandem Cross-Coupling Reactions Using Palladium Nanocatalysts with Controlled Oxidation. , 2017, Angewandte Chemie.

[3]  Yisheng Lai,et al.  A Re2O7 catalyzed cycloetherification of monoallylic diols , 2017 .

[4]  S. C. Ammal,et al.  Understanding Active Sites in the Water–Gas Shift Reaction for Pt–Re Catalysts on Titania , 2017 .

[5]  Chunhua Yan,et al.  Heterogeneous synergistic catalysis by Ru-RuOx nanoparticles for Se–Se bond activation , 2017, Nano Research.

[6]  Tao Zhang,et al.  Ruthenium nanoclusters dispersed on titania nanorods and nanoparticles as high-performance catalysts for aqueous-phase Fischer–Tropsch synthesis , 2016 .

[7]  K. Tomishige,et al.  Deoxydehydration with Molecular Hydrogen over Ceria-Supported Rhenium Catalyst with Gold Promoter , 2016 .

[8]  Ya‐Wen Zhang,et al.  Free-standing iridium and rhodium-based hierarchically-coiled ultrathin nanosheets for highly selective reduction of nitrobenzene to azoxybenzene under ambient conditions. , 2016, Nanoscale.

[9]  J. Hartwig Evolution of C-H Bond Functionalization from Methane to Methodology. , 2016, Journal of the American Chemical Society.

[10]  Ya‐Wen Zhang,et al.  Self-supported composites of thin Pt–Sn crosslinked nanowires for the highly chemoselective hydrogenation of cinnamaldehyde under ambient conditions , 2015 .

[11]  E. Hensen,et al.  Influence of Pt particle size and Re addition by catalytic reduction on aqueous phase reforming of glycerol for carbon-supported Pt(Re) catalysts , 2015 .

[12]  Robert J. Davis,et al.  Evidence for the Bifunctional Nature of Pt–Re Catalysts for Selective Glycerol Hydrogenolysis , 2015 .

[13]  J. Casas,et al.  Colloidal and microemulsion synthesis of rhenium nanoparticles in aqueous medium , 2015 .

[14]  Yadong Li,et al.  Nanostructuring gold wires as highly durable nanocatalysts for selective reduction of nitro compounds and azides with organosilanes , 2015, Nano Research.

[15]  Chunhua Yan,et al.  Selective synthesis of rhodium-based nanoframe catalysts by chemical etching of 3d metals. , 2015, Chemical communications.

[16]  A. Karim,et al.  Elucidation of the roles of Re in steam reforming of glycerol over Pt–Re/C catalysts , 2015 .

[17]  Randima P. Galhenage,et al.  In Situ Studies of Carbon Monoxide Oxidation on Platinum and Platinum–Rhenium Alloy Surfaces , 2015 .

[18]  Hyunjoon Song,et al.  A highly Lewis-acidic Pd(IV) surface on Pd@SiO2 nanocatalysts for hydroalkoxylation reactions. , 2014, Chemical communications.

[19]  K. Philippot,et al.  Facile synthesis of ultra-small rhenium nanoparticles. , 2014, Chemical communications.

[20]  Ya‐Wen Zhang,et al.  Pd–Rh Nanocrystals with Tunable Morphologies and Compositions as Efficient Catalysts toward Suzuki Cross-Coupling Reactions , 2014 .

[21]  R. Schlögl,et al.  The Oxidation of Rhenium and Identification of Rhenium Oxides During Catalytic Partial Oxidation of Ethylene: An In-Situ XPS Study , 2014 .

[22]  E. Hensen,et al.  Platinum–Rhenium Synergy on Reducible Oxide Supports in Aqueous‐Phase Glycerol Reforming , 2014 .

[23]  Shouheng Sun,et al.  Monodisperse MPt (M = Fe, Co, Ni, Cu, Zn) nanoparticles prepared from a facile oleylamine reduction of metal salts. , 2014, Nano letters.

[24]  H. Friedrich,et al.  Pt-Re synergy in aqueous-phase reforming of glycerol and the water–gas shift reaction , 2014 .

[25]  E. Hensen,et al.  Aqueous phase reforming of glycerol over Re-promoted Pt and Rh catalysts , 2014 .

[26]  F. Ribeiro,et al.  A reusable unsupported rhenium nanocrystalline catalyst for acceptorless dehydrogenation of alcohols through γ-C-H activation. , 2014, Angewandte Chemie.

[27]  Paul J. Dietrich,et al.  Bimetallic RhRe/C catalysts for the production of biomass-derived chemicals , 2013 .

[28]  N. Chatani,et al.  Catalytic functionalization of C(sp2)-H and C(sp3)-H bonds by using bidentate directing groups. , 2013, Angewandte Chemie.

[29]  Jackie Y. Ying,et al.  Nanostructured catalysts for organic transformations. , 2013, Accounts of chemical research.

[30]  Chunhua Yan,et al.  A conceptual translation of homogeneous catalysis into heterogeneous catalysis: homogeneous-like heterogeneous gold nanoparticle catalyst induced by ceria supporter. , 2013, Nanoscale.

[31]  S. Akbayrak,et al.  Metal Nanoparticles in Liquid Phase Catalysis , 2013 .

[32]  K. Tomishige,et al.  Structure of ReOx Clusters Attached on the Ir Metal Surface in Ir–ReOx/SiO2 for the Hydrogenolysis Reaction , 2012 .

[33]  K. Tomishige,et al.  C–O bond hydrogenolysis of cyclic ethers with OH groups over rhenium-modified supported iridium catalysts , 2012 .

[34]  Zhangjie Shi,et al.  From C(sp2)-H to C(sp3)-H: systematic studies on transition metal-catalyzed oxidative C-C formation. , 2012, Chemical Society reviews.

[35]  M. Engelhard,et al.  Correlation of Pt–Re surface properties with reaction pathways for the aqueous-phase reforming of glycerol , 2012 .

[36]  Ji Young Kim,et al.  Recent advances in the transition metal-catalyzed twofold oxidative C-H bond activation strategy for C-C and C-N bond formation. , 2011, Chemical Society reviews.

[37]  M. Zahmakiran,et al.  Metal nanoparticles in liquid phase catalysis; from recent advances to future goals. , 2011, Nanoscale.

[38]  Robert J. Davis,et al.  Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium-rhenium catalysts. , 2011, Journal of the American Chemical Society.

[39]  K. Tomishige,et al.  Chemoselective Hydrogenolysis of Tetrahydropyran‐2‐methanol to 1,6‐Hexanediol over Rhenium‐Modified Carbon‐Supported Rhodium Catalysts , 2010 .

[40]  K. Tomishige,et al.  Modification of Rh/SiO2 catalyst for the hydrogenolysis of glycerol in water , 2010 .

[41]  M. Armbrüster,et al.  Crystallite Size Controls the Crystal Structure of Cu60Pd40 Nanoparticles , 2009 .

[42]  Chengjian Zhu,et al.  An Efficient Molybdenum(VI)-Catalyzed Direct Substitution of Allylic Alcohols with Nitrogen, Oxygen, and Carbon Nucleophiles , 2009 .

[43]  Ilkeun Lee,et al.  Tuning selectivity in catalysis by controlling particle shape. , 2009, Nature materials.

[44]  Yadong Li,et al.  Nanocrystals: Solution-based synthesis and applications as nanocatalysts , 2009 .

[45]  R. Grubbs,et al.  Rhenium-catalyzed 1,3-isomerization of allylic alcohols: scope and chirality transfer. , 2006, The Journal of organic chemistry.

[46]  R. Schlögl,et al.  Nanocatalysis: mature science revisited or something really new? , 2004, Angewandte Chemie.

[47]  G. Lloyd‐Jones Mechanistic aspects of transition metal catalysed 1,6-diene and 1,6-enyne cycloisomerisation reactions. , 2003, Organic & biomolecular chemistry.

[48]  A. Borg,et al.  Growth and alloy formation studied by photoelectron spectroscopy and STM , 1999 .

[49]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[50]  G. Somorjai,et al.  AN XPS STUDY OF THE OXIDATION AND REDUCTION OF THE RHENIUM-PLATINUM SYSTEM UNDER ATMOSPHERIC CONDITIONS , 1988 .

[51]  M. Goto,et al.  X-ray photoelectron spectroscopic studies of unsupported and supported rhenium using argon-ion bombardment , 1984 .