Ultrathin Metal/Amorphous-Silicon/Metal Diode for Bipolar RRAM Selector Applications

We propose a novel metal/silicon/metal (MSM) selector using ultrathin undoped amorphous silicon (a-Si) for resistive-RAM selector application. The new selector behaves as a bidirectional diode, showing a high current drive (~2.2 MA/cm)2, high selectivity (~240 for 1/2 bias), fast switching speed , and excellent endurance ( at target drive current). The doping-free a-Si structure alleviates the dopant-induced variability concerns for ultrascaled devices and eliminates the need for a dopant-activation anneal. Circuit simulations show feasibility of 1-Mb array, with over 25% read margin and 70% write margin, when using the new MSM structure as a selector for a HfO2-based resistive switching memory element.

[1]  Jinwon Park,et al.  Highly reliable and fast nonvolatile hybrid switching ReRAM memory using thin Al2O3 demonstrated at 54nm memory array , 2011, 2011 Symposium on VLSI Technology - Digest of Technical Papers.

[2]  Guido Groeseneken,et al.  Analysis of the effect of cell parameters on the maximum RRAM array size considering both read and write , 2012, 2012 Proceedings of the European Solid-State Device Research Conference (ESSDERC).

[3]  M. Peruggia Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data , 2003 .

[4]  H. Hwang,et al.  Excellent Selector Characteristics of Nanoscale $ \hbox{VO}_{2}$ for High-Density Bipolar ReRAM Applications , 2011, IEEE Electron Device Letters.

[5]  Kinam Kim,et al.  Bi-layered RRAM with unlimited endurance and extremely uniform switching , 2011, 2011 Symposium on VLSI Technology - Digest of Technical Papers.

[6]  R. Degraeve,et al.  Performance and reliability of Ultra-Thin HfO2-based RRAM (UTO-RRAM) , 2013, 2013 5th IEEE International Memory Workshop.

[7]  H. Hwang,et al.  Ultrathin (<10nm) Nb2O5/NbO2 hybrid memory with both memory and selector characteristics for high density 3D vertically stackable RRAM applications , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[8]  K. Virwani,et al.  Sub-30nm scaling and high-speed operation of fully-confined Access-Devices for 3D crosspoint memory based on mixed-ionic-electronic-conduction (MIEC) materials , 2012, 2012 International Electron Devices Meeting.

[9]  P. Bafna,et al.  Punchthrough-Diode-Based Bipolar RRAM Selector by Si Epitaxy , 2012, IEEE Electron Device Letters.

[10]  H. Hwang,et al.  TiO2-based metal-insulator-metal selection device for bipolar resistive random access memory cross-point application , 2011 .

[11]  O. Richard,et al.  10×10nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation , 2011, 2011 International Electron Devices Meeting.

[12]  Hyunsang Hwang,et al.  Varistor-type bidirectional switch (JMAX>107A/cm2, selectivity∼104) for 3D bipolar resistive memory arrays , 2012, 2012 Symposium on VLSI Technology (VLSIT).