A robust multivariate measurement error model with skew-normal/independent distributions and Bayesian MCMC implementation

Abstract Skew-normal/independent distributions are a class of asymmetric thick-tailed distributions that include the skew-normal distribution as a special case. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis in multivariate measurement errors models. We propose the use of skew-normal/independent distributions to model the unobserved value of the covariates (latent variable) and symmetric normal/independent distributions for the random errors term, providing an appealing robust alternative to the usual symmetric process in multivariate measurement errors models. Among the distributions that belong to this class of distributions, we examine univariate and multivariate versions of the skew-normal, skew- t , skew-slash and skew-contaminated normal distributions. The results and methods are applied to a real data set.

[1]  Barnett Vd Simultaneous pairwise linear structural relationships. , 1969 .

[2]  R. Arellano-Valle,et al.  Skew-normal Linear Mixed Models , 2005, Journal of Data Science.

[3]  M. Genton,et al.  The multivariate skew-slash distribution , 2006 .

[4]  D. Dey,et al.  A General Class of Multivariate Skew-Elliptical Distributions , 2001 .

[5]  M. Genton,et al.  Robust Likelihood Methods Based on the Skew‐t and Related Distributions , 2008 .

[6]  K. Lange,et al.  Normal/Independent Distributions and Their Applications in Robust Regression , 1993 .

[7]  A. Azzalini,et al.  Statistical applications of the multivariate skew normal distribution , 2009, 0911.2093.

[8]  N. Loperfido Modeling maxima of longitudinal contralateral observations , 2008 .

[9]  Daniel Gianola,et al.  Robust Linear Mixed Models with Normal/Independent Distributions and Bayesian MCMC Implementation , 2003 .

[10]  Wayne A. Fuller,et al.  Statistical analysis of measurement error models and applications : proceedings of the AMS-IMS-SIAM Joint Summer Research conference held June 10-16, 1989, with support from the National Science Foundation and the U.S. Army Research Office , 1990 .

[11]  Seymour Geisser,et al.  8. Predictive Inference: An Introduction , 1995 .

[12]  Heleno Bolfarine,et al.  Skew normal measurement error models , 2005 .

[13]  C. M. Theobald,et al.  Comparative Calibration, Linear Structural Relationships and Congeneric Measurements , 1978 .

[14]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[15]  M. Galea-Rojas,et al.  Clinical measurement of testicular volume in adolescents: comparison of the reliability of 5 methods. , 1996, The Journal of urology.

[16]  Joseph G. Ibrahim,et al.  Monte Carlo Methods in Bayesian Computation , 2000 .

[17]  Hong Chang,et al.  Model Determination Using Predictive Distributions with Implementation via Sampling-Based Methods , 1992 .

[18]  A. Azzalini,et al.  Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.

[19]  Jack C. Lee,et al.  Robust mixture modeling using the skew t distribution , 2007, Stat. Comput..

[20]  Sudhir Gupta,et al.  Statistical Regression With Measurement Error , 1999, Technometrics.

[21]  V. H. Lachos,et al.  Bayesian analysis for a skew extension of the multivariate null intercept measurement error model , 2008 .

[22]  A. Satorra,et al.  Measurement Error Models , 1988 .

[23]  Likelihood-Based Inference for Multivariate Skew-Normal Regression Models , 2007 .

[24]  Leon Jay Gleser,et al.  Inference about comparative precision in linear structural relationships , 1986 .

[25]  M. Genton,et al.  A unified view on skewed distributions arising from selections , 2006 .

[26]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[27]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[28]  Filidor V. Labra,et al.  Multivariate measurement error models based on scale mixtures of the skew–normal distribution , 2010 .

[29]  Distance Tests Under Nonregular Conditions: Applications to the Comparative Calibration Model , 2002 .

[30]  M. Kendall,et al.  The advanced theory of statistics , 1945 .

[31]  Elliptical structural models , 1996 .

[32]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[33]  A. Azzalini,et al.  The multivariate skew-normal distribution , 1996 .

[34]  S. Geisser,et al.  A Predictive Approach to Model Selection , 1979 .