Predicting evolution from the shape of genealogical trees

Given a sample of genome sequences from an asexual population, can one predict its evolutionary future? Here we demonstrate that the branching patterns of reconstructed genealogical trees contains information about the relative fitness of the sampled sequences and that this information can be used to predict successful strains. Our approach is based on the assumption that evolution proceeds by accumulation of small effect mutations, does not require species specific input and can be applied to any asexual population under persistent selection pressure. We demonstrate its performance using historical data on seasonal influenza A/H3N2 virus. We predict the progenitor lineage of the upcoming influenza season with near optimal performance in 30% of cases and make informative predictions in 16 out of 19 years. Beyond providing a tool for prediction, our ability to make informative predictions implies persistent fitness variation among circulating influenza A/H3N2 viruses. DOI: http://dx.doi.org/10.7554/eLife.03568.001

[1]  H. Grüneberg,et al.  Introduction to quantitative genetics , 1960 .

[2]  A. Hampson Influenza virus antigens and ‘antigenic drift’ , 2002 .

[3]  H. Shaffer,et al.  Annual review of ecology, evolution, and systematics , 2003 .

[4]  M. Lässig,et al.  A predictive fitness model for influenza , 2014, Nature.

[5]  Kessler,et al.  RNA virus evolution via a fitness-space model. , 1996, Physical review letters.

[6]  R. Neher Genetic Draft, Selective Interference, and Population Genetics of Rapid Adaptation , 2013, 1302.1148.

[7]  E. Holmes,et al.  The evolution of epidemic influenza , 2007, Nature Reviews Genetics.

[8]  I. Wilson,et al.  Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation , 1981, Nature.

[9]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[10]  B. Shraiman,et al.  How to Infer Relative Fitness from a Sample of Genomic Sequences , 2012, Genetics.

[11]  E. Kandel,et al.  Proceedings of the National Academy of Sciences of the United States of America. Annual subject and author indexes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Colin A. Russell,et al.  The Global Circulation of Seasonal Influenza A (H3N2) Viruses , 2008, Science.

[13]  Oskar Hallatschek,et al.  Genealogies of rapidly adapting populations , 2012, Proceedings of the National Academy of Sciences.

[14]  Samir Bhatt,et al.  The genomic rate of molecular adaptation of the human influenza A virus. , 2011, Molecular biology and evolution.

[15]  B. Bainbridge,et al.  Genetics , 1981, Experientia.

[16]  Marc A Suchard,et al.  Stability-mediated epistasis constrains the evolution of an influenza protein , 2013, eLife.

[17]  Michael M. Desai,et al.  Dynamic Mutation–Selection Balance as an Evolutionary Attractor , 2012, Genetics.

[18]  Fabio Zanini,et al.  FFPopSim: an efficient forward simulation package for the evolution of large populations , 2012, Bioinform..

[19]  A. R. Wagner Molecular Biology and Evolution , 2001 .

[20]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[21]  M. Lässig,et al.  Clonal Interference in the Evolution of Influenza , 2012, Genetics.

[22]  Adam P. Arkin,et al.  FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix , 2009, Molecular biology and evolution.

[23]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[24]  B. Derrida,et al.  Effect of selection on ancestry: an exactly soluble case and its phenomenological generalization. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Oskar Hallatschek,et al.  The noisy edge of traveling waves , 2010, Proceedings of the National Academy of Sciences.

[26]  G. Dumyati,et al.  Influenza and Other Respiratory Viruses , 2006 .

[27]  J. Coffin,et al.  Highly fit ancestors of a partly sexual haploid population. , 2007, Theoretical population biology.

[28]  Michael M. Desai,et al.  Beneficial Mutation–Selection Balance and the Effect of Linkage on Positive Selection , 2006, Genetics.

[29]  A. Lapedes,et al.  Mapping the Antigenic and Genetic Evolution of Influenza Virus , 2004, Science.

[30]  Richard H Scheuermann,et al.  Influenza Research Database: an integrated bioinformatics resource for influenza research and surveillance , 2012, Influenza and other respiratory viruses.

[31]  H. Levine,et al.  Front propagation up a reaction rate gradient. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Trevor Bedford,et al.  Integrating influenza antigenic dynamics with molecular evolution , 2013, eLife.

[33]  W. Fitch,et al.  Predicting the evolution of human influenza A. , 1999, Science.

[34]  M. Suchard,et al.  Unifying Viral Genetics and Human Transportation Data to Predict the Global Transmission Dynamics of Human Influenza H3N2 , 2014, PLoS pathogens.

[35]  S. Kak Information, physics, and computation , 1996 .

[36]  Bhupal Singh Influenza , 1916, Nature Reviews Disease Primers.

[37]  M. Huynen,et al.  Neutral evolution of mutational robustness. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[38]  J. Coffin,et al.  The solitary wave of asexual evolution , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Arthur Chun-Chieh Shih,et al.  Simultaneous amino acid substitutions at antigenic sites drive influenza A hemagglutinin evolution , 2007, Proceedings of the National Academy of Sciences.

[40]  Michael M. Desai,et al.  Genetic Diversity and the Structure of Genealogies in Rapidly Adapting Populations , 2012, Genetics.

[41]  Jonathan Dushoff,et al.  Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[42]  B. Shraiman,et al.  Genetic Draft and Quasi-Neutrality in Large Facultatively Sexual Populations , 2011, Genetics.

[43]  Travis E. Oliphant,et al.  Python for Scientific Computing , 2007, Computing in Science & Engineering.

[44]  Elizabeth C. Theil,et al.  Epochal Evolution Shapes the Phylodynamics of Interpandemic Influenza A (H3N2) in Humans , 2006, Science.

[45]  D. Burke,et al.  Substitutions Near the Receptor Binding Site Determine Major Antigenic Change During Influenza Virus Evolution , 2013, Science.