Experimental and numerical study on formability of friction stir welded TWB sheets based on hemispherical dome stretch tests

In order to investigate formability performance and also to obtain guidelines for the stamping process design of friction stir welded TWB (tailor welded blank) sheets, the hemispherical dome stretching test was experimentally performed and the results of the base and friction stir welded samples were compared. Also, in order to better understand the experimental results, numerical analysis was performed. In this work, five automotive sheets, 6111-T4, 5083-H18, 5083-O aluminum alloy, dual-phase steel (DP590) and AZ31 magnesium alloy sheets were considered by (friction stir) welding the same materials. To represent mechanical properties for the numerical analysis, the non-quadratic orthotropic yield function, Yld2000-2d, was utilized for the aluminum alloy and DP590 sheets, while the Cazacu anisotropic/asymmetric yield function was applied for the AZ31 sheet considering different hardening behavior in tension and compression.

[1]  S. Agnew,et al.  Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet , 2007 .

[2]  R. Hill,et al.  On discontinuous plastic states, with special reference to localized necking in thin sheets , 1952 .

[3]  Taylan Altan,et al.  Finite element simulation of magnesium alloy sheet forming at elevated temperatures , 2004 .

[4]  B. B. Grimmett,et al.  Friction stir welding studies on mild steel , 2003 .

[5]  W. Hosford A Generalized Isotropic Yield Criterion , 1972 .

[6]  C. Tomé,et al.  Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling , 2003 .

[7]  Sung Wook Chung,et al.  Influence of friction stir welding parameters on grain size and formability in 5083 aluminum alloy , 2007 .

[8]  R. H. Wagoner,et al.  Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheets , 2008 .

[9]  S. Spigarelli,et al.  Microstructure and mechanical property studies of AA6056 friction stir welded plate , 2007 .

[10]  Kwansoo Chung,et al.  A practical two-surface plasticity model and its application to spring-back prediction , 2007 .

[11]  T. J. Lienert,et al.  Improved weldability diagram for pulsed laser welded austenitic stainless steels , 2003 .

[12]  M. Mabuchi,et al.  Stretch formability of AZ31 Mg alloy sheets at different testing temperatures , 2007 .

[13]  R. Mishra,et al.  Enhanced superplasticity through friction stir processing in continuous cast AA5083 aluminum , 2007 .

[14]  R. H. Wagoner,et al.  Forming of tailor-welded blanks , 1996 .

[15]  H. Kokawa,et al.  Distribution of tensile property and microstructure in friction stir weld of 6063 aluminum , 2001 .

[16]  R. E. Dick,et al.  Plane stress yield functions for aluminum alloy sheets , 2002 .

[17]  Lallit Anand,et al.  A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B , 2003 .

[18]  Kwansoo Chung,et al.  Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions: Part II: characterization of material properties , 2005 .

[19]  Yen-Lung Chen,et al.  Friction Stir Processed AA5182-O and AA6111-T4 Aluminum Alloys. Part 1: Electron Backscattered Diffraction Analysis , 2007 .

[20]  M. Tumuluru,et al.  Resistance spot welding of coated high-strength dual-phase steels , 2006 .

[21]  Patrick Ulysse,et al.  Three-dimensional modeling of the friction stir-welding process , 2002 .

[22]  Radovan Kovacevic,et al.  Thermo-mechanical model with adaptive boundary conditions for friction stir welding of Al 6061 , 2005 .

[23]  William D. Lockwood,et al.  Mechanical response of friction stir welded AA2024: experiment and modeling , 2002 .

[24]  R. H. Wagoner,et al.  Hardening evolution of AZ31B Mg sheet , 2007 .

[25]  C. Tomé,et al.  Internal strain and texture evolution during deformation twinning in magnesium , 2005 .

[26]  William F. Hosford,et al.  Upper-bound anisotropic yield locus calculations assuming 〈111〉-pencil glide , 1980 .

[27]  T. DebRoy,et al.  Porosity, underfill and magnesium loss during continuous wave Nd:YAG laser welding of thin plates of aluminum alloys 5182 and 5754 , 1999 .

[28]  R. Nandan,et al.  Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding , 2006 .

[29]  Hiroyuki Kokawa,et al.  Microstructural evolution of 6063 aluminum during friction-stir welding , 1999 .

[30]  Lawrence E Murr,et al.  Microstructural aspects of the friction-stir welding of 6061-T6 aluminum , 1997 .

[31]  R. H. Wagoner,et al.  Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheets : Application to sheet springback , 2009 .

[32]  K. Chung,et al.  A deformation theory of plasticity based on minimum work paths , 1993 .

[33]  Paul A. Colegrove,et al.  Two-dimensional CFD modelling of flow round profiled FSW tooling , 2004 .

[34]  R. Mishra,et al.  Abnormal grain growth in friction stir processed alloys , 2008 .

[35]  S. Agnew,et al.  Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B , 2005 .

[36]  S. Jung,et al.  Joint properties of friction stir welded AZ31B– H24 magnesium alloy , 2003 .

[37]  Drawability assessment of BCC steel sheet by using elastic/crystalline viscoplastic finite element analyses , 2001 .

[38]  Rajiv S. Mishra,et al.  Friction Stir Welding and Processing , 2007 .

[39]  Z. Marciniak,et al.  Limit strains in the processes of stretch-forming sheet metal , 1967 .

[40]  Ricardo A. Lebensohn,et al.  A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals : application to zirconium alloys , 1993 .

[41]  Frédéric Barlat,et al.  Orthotropic yield criterion for hexagonal closed packed metals , 2006 .

[42]  Frédéric Barlat,et al.  A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals , 2004 .

[43]  Xinjin Cao,et al.  Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy , 2008 .

[44]  Frédéric Barlat,et al.  Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions: Part I: theory and formulation , 2005 .

[45]  Farhang Pourboghrat,et al.  Wrinkling control in aluminum sheet hydroforming , 2005 .

[46]  Frédéric Barlat,et al.  Prediction of the forming limit diagrams of anisotropic sheets in linear and non-linear loading , 1985 .

[47]  C. Tomé,et al.  Validating a polycrystal model for the elastoplastic response of magnesium alloy AZ31 using in situ neutron diffraction , 2006 .

[48]  H. D. Hibbitt,et al.  ABAQUS-EPGEN: a general-purpose finite element code. Volume 1 (Revision 2). User's manual , 1984 .

[49]  P. A. Turner,et al.  A study of residual stresses in Zircaloy-2 with rod texture , 1994 .

[50]  W. Chien,et al.  A combined necking and shear localization analysis for aluminum sheets under biaxial stretching conditions , 2004 .

[51]  J. T. Chen,et al.  The simulation of material behaviors in friction stir welding process by using rate-dependent constitutive model , 2008 .

[52]  K. Ho,et al.  Non-basal slip systems in HCP metals and alloys: source mechanisms , 2001 .

[53]  F. Barlat,et al.  Plane stress yield function for aluminum alloy sheets—part 1: theory , 2003 .

[54]  Seung-Boo Jung,et al.  The joint properties of dissimilar formed Al alloys by friction stir welding according to the fixed location of materials , 2003 .

[55]  P. Liaw,et al.  Twinning–detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A , 2008 .