Drugging the undruggables: exploring the ubiquitin system for drug development

Dynamic modulation of protein levels is tightly controlled in response to physiological cues. In mammalian cells, much of the protein degradation is carried out by the ubiquitin-proteasome system (UPS). Similar to kinases, components of the ubiquitin system are often dysregulated, leading to a variety of diseases, including cancer and neurodegeneration, making them attractive drug targets. However, so far there are only a handful of drugs targeting the ubiquitin system that have been approved by the FDA. Here, we review possible therapeutic intervention nodes in the ubiquitin system, analyze the challenges, and highlight the most promising strategies to target the UPS.

[1]  Toshihiko Ogura,et al.  Identification of a Primary Target of Thalidomide Teratogenicity , 2010, Science.

[2]  R. Deshaies,et al.  Protacs: Chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Brian Raught,et al.  A Strategy for Modulation of Enzymes in the Ubiquitin System , 2013, Science.

[4]  Christine Yu,et al.  Ubiquitin Chain Editing Revealed by Polyubiquitin Linkage-Specific Antibodies , 2008, Cell.

[5]  H. Handa,et al.  Structure of the human Cereblon–DDB1–lenalidomide complex reveals basis for responsiveness to thalidomide analogs , 2014, Nature Structural &Molecular Biology.

[6]  A. Matouschek,et al.  Regulated protein turnover: snapshots of the proteasome in action , 2014, Nature Reviews Molecular Cell Biology.

[7]  J. Rizo,et al.  Jasmonate perception by inositol phosphate-potentiated COI1-JAZ co-receptor , 2010, Nature.

[8]  M. Oren,et al.  Mdm2 promotes the rapid degradation of p53 , 1997, Nature.

[9]  J. Silke,et al.  IAP family of cell death and signaling regulators. , 2014, Methods in enzymology.

[10]  R. Young,et al.  BET Bromodomain Inhibition as a Therapeutic Strategy to Target c-Myc , 2011, Cell.

[11]  Mike Tyers,et al.  An Allosteric Inhibitor of the Human Cdc34 Ubiquitin-Conjugating Enzyme , 2011, Cell.

[12]  Min Huang,et al.  Inactivation of murine Usp1 results in genomic instability and a Fanconi anemia phenotype. , 2009, Developmental cell.

[13]  M. Hung,et al.  Pharmacological Inactivation of Skp2 SCF Ubiquitin Ligase Restricts Cancer Stem Cell Traits and Cancer Progression , 2013, Cell.

[14]  T. Willson,et al.  Structural basis for an unexpected mode of SERM-mediated ER antagonism. , 2005, Molecular cell.

[15]  M. Rapé,et al.  Mechanism of Ubiquitin-Chain Formation by the Human Anaphase-Promoting Complex , 2008, Cell.

[16]  Min Jae Lee,et al.  Enhancement of Proteasome Activity by a Small-Molecule Inhibitor of Usp14 , 2010, Nature.

[17]  J C Reed,et al.  IAP family proteins--suppressors of apoptosis. , 1999, Genes & development.

[18]  Michele Pagano,et al.  SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27 , 1999, Nature Cell Biology.

[19]  M. Rapé,et al.  Building ubiquitin chains: E2 enzymes at work , 2009, Nature Reviews Molecular Cell Biology.

[20]  Ivan Dikic,et al.  Ubiquitination in disease pathogenesis and treatment , 2014, Nature Medicine.

[21]  S. Hymowitz,et al.  Antagonists Induce a Conformational Change in cIAP1 That Promotes Autoubiquitination , 2011, Science.

[22]  Jerome Wielens,et al.  Oncogenic protein interfaces: small molecules, big challenges , 2014, Nature Reviews Cancer.

[23]  D. Esseltine,et al.  Multicenter, phase I, dose-escalation trial of lenalidomide plus bortezomib for relapsed and relapsed/refractory multiple myeloma. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[24]  Christopher E. Berndsen,et al.  New insights into ubiquitin E3 ligase mechanism , 2014, Nature Structural &Molecular Biology.

[25]  R. Deshaies,et al.  RING domain E3 ubiquitin ligases. , 2009, Annual review of biochemistry.

[26]  M. Protopopova,et al.  Small molecule RITA binds to p53, blocks p53–HDM-2 interaction and activates p53 function in tumors , 2004, Nature Medicine.

[27]  D. Esseltine,et al.  A phase 2 trial of lenalidomide, bortezomib, and dexamethasone in patients with relapsed and relapsed/refractory myeloma. , 2014, Blood.

[28]  A. Levine p53, the Cellular Gatekeeper for Growth and Division , 1997, Cell.

[29]  David A. Agard,et al.  The Structural Basis of Estrogen Receptor/Coactivator Recognition and the Antagonism of This Interaction by Tamoxifen , 1998, Cell.

[30]  David L. Vaux,et al.  IAPs, RINGs and ubiquitylation , 2005, Nature Reviews Molecular Cell Biology.

[31]  Xiaodong Wang,et al.  Smac, a Mitochondrial Protein that Promotes Cytochrome c–Dependent Caspase Activation by Eliminating IAP Inhibition , 2000, Cell.

[32]  H. Walden,et al.  RBR E3 ubiquitin ligases: new structures, new insights, new questions , 2014, The Biochemical journal.

[33]  I. E. Smith,et al.  HaloPROTACS: Use of Small Molecule PROTACs to Induce Degradation of HaloTag Fusion Proteins. , 2015, ACS chemical biology.

[34]  David A. Agard,et al.  Structural characterization of a subtype-selective ligand reveals a novel mode of estrogen receptor antagonism , 2002, Nature Structural Biology.

[35]  M. Pagano,et al.  Specific small molecule inhibitors of Skp2-mediated p27 degradation. , 2012, Chemistry & biology.

[36]  Simone Fulda,et al.  Targeting IAP proteins for therapeutic intervention in cancer , 2012, Nature Reviews Drug Discovery.

[37]  Wilhelm Krek,et al.  p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells , 1999, Nature Cell Biology.

[38]  M. Gerritsen,et al.  Novel Inhibitors of Cytokine-induced IκBα Phosphorylation and Endothelial Cell Adhesion Molecule Expression Show Anti-inflammatory Effects in Vivo* , 1997, The Journal of Biological Chemistry.

[39]  K. Anderson,et al.  Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. , 2003, Blood.

[40]  Daniel Kaganovich,et al.  Protein quality control: chaperones culling corrupt conformations , 2005, Nature Cell Biology.

[41]  C. Anfinsen Principles that govern the folding of protein chains. , 1973, Science.

[42]  P. Richardson,et al.  In Vitro and In Vivo Selective Antitumor Activity of a Novel Orally Bioavailable Proteasome Inhibitor MLN9708 against Multiple Myeloma Cells , 2011, Clinical Cancer Research.

[43]  C. Crews,et al.  Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[44]  V. Jordan,et al.  The estrogen receptor: a model for molecular medicine. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[45]  J. Fletcher,et al.  USP6 (Tre2) Fusion Oncogenes in Aneurysmal Bone Cyst , 2004, Cancer Research.

[46]  Yevgeniy V. Serebrenik,et al.  Targeted Protein Destabilization Reveals an Estrogen-mediated ER Stress Response , 2014, Nature chemical biology.

[47]  Christopher J. Ott,et al.  The Myeloma Drug Lenalidomide Promotes the Cereblon-Dependent Destruction of Ikaros Proteins , 2014, Science.

[48]  I. Sanz,et al.  Inhibition of proliferation and survival of diffuse large B-cell lymphoma cells by a small-molecule inhibitor of the ubiquitin-conjugating enzyme Ubc13-Uev1A. , 2012, Blood.

[49]  A. Ciulli,et al.  Selective Small Molecule Induced Degradation of the BET Bromodomain Protein BRD4 , 2015, ACS chemical biology.

[50]  R. Brasseur,et al.  The hydrophobic effect in protein folding , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[51]  R. Huber,et al.  Crystal Structure of Epoxomicin:20S Proteasome reveals a molecular basis for selectivity of alpha,beta-Epoxyketone Proteasome Inhibitors , 2000 .

[52]  Akio Matsuda,et al.  Genome-Wide and Functional Annotation of Human E3 Ubiquitin Ligases Identifies MULAN, a Mitochondrial E3 that Regulates the Organelle's Dynamics and Signaling , 2008, PloS one.

[53]  P. Elliott,et al.  The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. , 2001, Cancer research.

[54]  Parantu K. Shah,et al.  A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. , 2012, Cancer cell.

[55]  David P. Davis,et al.  Ubiquitin Ligase RNF146 Regulates Tankyrase and Axin to Promote Wnt Signaling , 2011, PloS one.

[56]  Andiliy G. Lai,et al.  Identification of GDC-0810 (ARN-810), an Orally Bioavailable Selective Estrogen Receptor Degrader (SERD) that Demonstrates Robust Activity in Tamoxifen-Resistant Breast Cancer Xenografts. , 2015, Journal of medicinal chemistry.

[57]  René Bernards,et al.  A Genomic and Functional Inventory of Deubiquitinating Enzymes , 2005, Cell.

[58]  J. Pruneda,et al.  Allosteric Activation of the RNF146 Ubiquitin Ligase by a Poly(ADP-ribosyl)ation Signal , 2014, Nature.

[59]  A. Levine,et al.  Structure of the MDM2 Oncoprotein Bound to the p53 Tumor Suppressor Transactivation Domain , 1996, Science.

[60]  S. Elledge,et al.  Structure of the Cul1–Rbx1–Skp1–F boxSkp2 SCF ubiquitin ligase complex , 2002, Nature.

[61]  H. Li,et al.  USP37 directly deubiquitinates and stabilizes c-Myc in lung cancer , 2014, Oncogene.

[62]  J. Moffat,et al.  The ubiquitin-activating enzyme E1 as a therapeutic target for the treatment of leukemia and multiple myeloma. , 2010, Blood.

[63]  S. Grant,et al.  Synergistic Induction of Oxidative Injury and Apoptosis in Human Multiple Myeloma Cells by the Proteasome Inhibitor Bortezomib and Histone Deacetylase Inhibitors , 2004, Clinical Cancer Research.

[64]  Yili Yang,et al.  Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. , 2007, Cancer research.

[65]  J. Gervais,et al.  Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Amanda Doucette,et al.  An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer , 2009, Nature.

[67]  S. Minoshima,et al.  Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism , 1998, Nature.

[68]  C. Pace,et al.  Forces contributing to the conformational stability of proteins , 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[69]  J. Wade Harper,et al.  Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways , 2009, Nature Reviews Molecular Cell Biology.

[70]  Christoph H. Emmerich,et al.  The anti-inflammatory drug BAY 11-7082 suppresses the MyD88-dependent signalling network by targeting the ubiquitin system , 2013, The Biochemical journal.

[71]  P. Hasselgren,et al.  Molecular regulation of muscle cachexia: it may be more than the proteasome. , 2002, Biochemical and biophysical research communications.

[72]  M. Estelle,et al.  The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. , 1998, Genes & development.

[73]  I. Wertz,et al.  Toward understanding ubiquitin-modifying enzymes: from pharmacological targeting to proteomics. , 2014, Trends in pharmacological sciences.

[74]  Edward L. Huttlin,et al.  Systematic and quantitative assessment of the ubiquitin-modified proteome. , 2011, Molecular cell.

[75]  M. Ladanyi,et al.  MDM2 gene amplification in metastatic osteosarcoma. , 1993, Cancer research.

[76]  Zhiwei Wang,et al.  Roles of F-box proteins in cancer , 2014, Nature Reviews Cancer.

[77]  T. Corson,et al.  Small-Molecule Hydrophobic Tagging Induced Degradation of HaloTag Fusion Proteins , 2011, Nature Chemical Biology.

[78]  Mårten Fryknäs,et al.  Inhibition of proteasome deubiquitinating activity as a new cancer therapy , 2011, Nature Medicine.

[79]  A. Bauer,et al.  RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling , 2011, Nature Cell Biology.

[80]  Jeremy L. Jenkins,et al.  Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide , 2014, Nature.

[81]  J. Gribben,et al.  Bortezomib blocks Bax degradation in malignant B cells during treatment with TRAIL. , 2008, Blood.

[82]  T. Nagykálnai,et al.  [Cachexia in cancer patients]. , 2016, Magyar onkologia.

[83]  Jan Bergman,et al.  PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. , 2009, Cancer cell.

[84]  F. Bazan,et al.  Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival , 2010, Nature.

[85]  Chun Cheng,et al.  The Expression and Prognosis of FOXO3a and Skp2 in Human Hepatocellular Carcinoma , 2009, Pathology & Oncology Research.

[86]  Javed Siddiqui,et al.  Activating ESR1 mutations in hormone-resistant metastatic breast cancer , 2013, Nature Genetics.

[87]  William B. Smith,et al.  Selective inhibition of BET bromodomains , 2010, Nature.

[88]  A. Levine,et al.  The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation , 1992, Cell.

[89]  B. Quesnel,et al.  Over‐expression of the MDM2 gene is found in some cases of haematological malignancies , 1994, British journal of haematology.

[90]  Steven P. Gygi,et al.  Dynamics of Cullin-RING Ubiquitin Ligase Network Revealed by Systematic Quantitative Proteomics , 2010, Cell.

[91]  I. E. Smith,et al.  Catalytic in vivo protein knockdown by small-molecule PROTACs. , 2015, Nature chemical biology.

[92]  S. Gygi,et al.  Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging , 2007, Nature.

[93]  B. O’Malley,et al.  Proteasome-dependent degradation of the human estrogen receptor. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[94]  P. Jänne,et al.  Pharmacological Targeting of the Pseudokinase Her3 , 2014, Nature chemical biology.

[95]  L. Lam,et al.  ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets , 2013, Nature Medicine.

[96]  M. Rapé,et al.  K11-linked ubiquitin chains as novel regulators of cell division. , 2011, Trends in cell biology.

[97]  Jia-qing Li,et al.  Correlation of Skp2 with carcinogenesis, invasion, metastasis, and prognosis in colorectal tumors. , 2004, International journal of oncology.

[98]  A. Wakeling,et al.  A potent specific pure antiestrogen with clinical potential. , 1991, Cancer research.

[99]  S. Demo,et al.  Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. , 2007, Cancer research.

[100]  K. Iwai,et al.  Generation and physiological roles of linear ubiquitin chains , 2012, BMC Biology.

[101]  L. Hedstrom,et al.  Inhibitor mediated protein degradation. , 2012, Chemistry & biology.

[102]  Ping Li,et al.  Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ. , 2010, Molecular cell.

[103]  D. Germain,et al.  Differential expression of the F-box proteins Skp2 and Skp2B in breast cancer , 2005, Oncogene.

[104]  Zhijian J. Chen,et al.  Activation of the IκB Kinase Complex by TRAF6 Requires a Dimeric Ubiquitin-Conjugating Enzyme Complex and a Unique Polyubiquitin Chain , 2000, Cell.

[105]  V. Battaglia,et al.  Discovery of specific inhibitors of human USP7/HAUSP deubiquitinating enzyme. , 2012, Chemistry & biology.

[106]  K. Anderson,et al.  Proteasome inhibitor therapy in multiple myeloma , 2005, Molecular Cancer Therapeutics.

[107]  K. Shokat,et al.  Targeting the cancer kinome through polypharmacology , 2010, Nature Reviews Cancer.

[108]  David Chen,et al.  ESR1 ligand binding domain mutations in hormone-resistant breast cancer , 2013, Nature Genetics.

[109]  K. Vousden,et al.  Ubiquitination and Degradation of Mutant p53 , 2007, Molecular and Cellular Biology.

[110]  Vishva M Dixit,et al.  IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. , 2007, Cell.

[111]  C. Lima,et al.  Structural and functional insights to ubiquitin-like protein conjugation. , 2014, Annual review of biophysics.

[112]  K. Ohshima,et al.  Prognostic significance of S-phase kinase-associated protein 2 and p27kip1 in patients with diffuse large B-cell lymphoma: effects of rituximab. , 2010, Annals of oncology : official journal of the European Society for Medical Oncology.

[113]  M. Dimopoulos,et al.  Current treatment landscape for relapsed and/or refractory multiple myeloma , 2015, Nature Reviews Clinical Oncology.

[114]  Michael J. Emanuele,et al.  Global Identification of Modular Cullin-RING Ligase Substrates , 2011, Cell.

[115]  J. Hazle,et al.  The Skp2-SCF E3 Ligase Regulates Akt Ubiquitination, Glycolysis, Herceptin Sensitivity, and Tumorigenesis , 2012, Cell.

[116]  B. Ruggeri,et al.  Novel, orally active, proteasome inhibitor, delanzomib (CEP-18770), ameliorates disease symptoms and glomerulonephritis in two preclinical mouse models of SLE. , 2012, International immunopharmacology.

[117]  Daniel C. Scott,et al.  Structural Insights into NEDD8 Activation of Cullin-RING Ligases: Conformational Control of Conjugation , 2008, Cell.

[118]  S. Carr,et al.  Lenalidomide Causes Selective Degradation of IKZF1 and IKZF3 in Multiple Myeloma Cells , 2014, Science.

[119]  C. Crews,et al.  Hijacking the E3 Ubiquitin Ligase Cereblon to Efficiently Target BRD4. , 2015, Chemistry & biology.

[120]  J. Mestan,et al.  Skp2 is oncogenic and overexpressed in human cancers , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[121]  James E. Bradner,et al.  Phthalimide conjugation as a strategy for in vivo target protein degradation , 2015, Science.

[122]  Ottoline Leyser,et al.  Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins , 2001, Nature.

[123]  Bo Yang,et al.  Lenalidomide Treatment for Multiple Myeloma: Systematic Review and Meta-Analysis of Randomized Controlled Trials , 2013, PloS one.

[124]  N. Gray,et al.  Targeting cancer with small molecule kinase inhibitors , 2009, Nature Reviews Cancer.

[125]  Robert L Moritz,et al.  Identification of DIABLO, a Mammalian Protein that Promotes Apoptosis by Binding to and Antagonizing IAP Proteins , 2000, Cell.

[126]  D. Carney,et al.  Amplification of the MDM2 gene in human breast cancer and its association with MDM2 and p53 protein status. , 1995, British Journal of Cancer.

[127]  Dajun Yang,et al.  Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition , 2008, Proceedings of the National Academy of Sciences.

[128]  M. Rapé,et al.  The Ubiquitin Code , 2012, Annual review of biochemistry.

[129]  L. Vassilev,et al.  In Vivo Activation of the p53 Pathway by Small-Molecule Antagonists of MDM2 , 2004, Science.

[130]  V. Dixit,et al.  Deubiquitinase USP37 is activated by CDK2 to antagonize APC(CDH1) and promote S phase entry. , 2011, Molecular cell.

[131]  David Komander,et al.  Breaking the chains: structure and function of the deubiquitinases , 2009, Nature Reviews Molecular Cell Biology.

[132]  J. Adams The development of proteasome inhibitors as anticancer drugs. , 2004, Cancer cell.