The TEDDY Study Group, al., E. (2019). Metabolite-related dietary patterns and the development of islet autoimmunity. Scientific Reports
暂无分享,去创建一个
Fiske | Polly | Kendra | E. Bonifacio | J. Ilonen | M. Knip | H. Parikh | Hye-Seung Lee | B. Burkhardt | Susan B. Smith | C. Eberhard | O. Simell | T. Gard | Kathleen C. Waugh | A. Steck | R. McIndoe | Liping Yu | T. Kind | S. Simell | A. Hekkala | H. Hyöty | R. Veijola | Gert Wohlgemuth | K. Heyman | K. Driscoll | Suzanne | M. Koivikko | M. Ask | S. Ruohonen | D. Cuthbertson | D. Agardh | Markus Mattila | L. Jacobsen | S. Hummel | S. Niinistö | D. Miao | K. Lindfors | Julia Schwabe | Jimin Yang | Ashok Sharma | John Marks | Noah Sulman | J. Baxter | K. Bourcier | Marlon Scholz | K. Warncke | Katherine Silvis | C. Aronsson | Xiang Liu | R. Tamura | A. Riikonen | H. Larsson | M. Lönnrot | S. Oikarinen | D. Hopkins | Tiina Niininen | Jamie Malloy | E. Liu | Steven | A. Williams | Meulemans | Luis Valdiviez | M. Lundgren | R. Lyons | Rasheedah Brown | Mari Åkerlund | B. Sjöberg | A. Ramelius | Andrea | Laura | Mari Vähä-Mäkilä | J. Melin | Patricia Gesualdo | Rachel Karban | H. Holappa | A. Ikonen | Sanna Jokipuu | Mirva Koreasalo | Jarita Kytölä | Tiina Latva-aho | Katja Multasuo | Teija Mykkänen | Paula Ollikainen | Sirpa Pohjola | J. Rautanen | Minna Romo | Aino Stenius | E. Varjonen | Irene Viinikangas | M. Gardiner | Cigdem Gezginci | Anja Heublein | Charlotte Koch | Claudia Ramminger | Joanna Stock | L. Wendel | Lina Fransson | M. Hansen | Susanne Hyberg | Marielle Lindström | Zeliha Mestan | F. Salami | Anette Sjöberg | C. Crouch | J. Skidmore | Arlene Meyer | Denise Mulenga | J. Radtke | Davey Schmitt | S. Zink | Maryouri Avendano | Sandra Baethke | Martha D. Butterworth | Joanna Clasen | Jennifer Garmeson | Veena Gowda | Belinda Hsiao | Qian Li | Shu Liu | Dena Tewey | M. Toth | Ponni Vijayakandipan | Francisco Perez Laras | C. Maguire | A. Merrell | Ryan Quigley | Bennett Johnson | Ahonen | I. Kelland | O. Ball | K. Chandler | Schatz | Michael | Smith | Berglind | L. Karlsson | Miia Kähönen | M. Nyblom | Åsa Wimar | Michael B Killian | Sandra Ke | Niveen Mulholland | S. Grace | Anne P. Wallin | Karin Ottosson | J. Bremer | F. Johansen | Silvija Jovic | Sini Vainionpää | Petra Rajala | Desmond | Rasmus | Anita | Elina | Jonsdottir | Jared | Christiane | Winkler | Kristián | Gonzalez | Keimer | Roth | Benjamin Wancewicz | Marisa Gallant | Sinikka Jäminki | Maija Sjöberg | Jennifer Bryant | Miryam D’Angelo | Sibylle Koletzko | Hanna Jisser | Maria Månsson-Martinez | Maria Markan | Masumeh Chavoshi | Kayleen Dunson | R. Hervey | Matei Romancik | Cassandra L Remedios | K. Wood | J. Wong | Kalle | Radtke | Haller | D. Grapov | Ben | S. Koletzko | Annika Adamsson | Leigh Steed | Stephen W. Anderson | Daniel felipe-Morales | C. Nilsson | cristina Mccarthy | Kobra Rahmati | Suvi | Kurppa | Mäntymäki | Gavrisan | Roswith | Bennet | -. SarahAustin | Christina | Karges | Lynch | Vehik | Bingley | Gillard
[1] H. Siljander,et al. Cord-Blood Lipidome in Progression to Islet Autoimmunity and Type 1 Diabetes , 2019, Biomolecules.
[2] I. Giegling,et al. The human metabolic profile reflects macro- and micronutrient intake distinctly according to fasting time , 2018, Scientific Reports.
[3] F. Pociot,et al. Abnormal islet sphingolipid metabolism in type 1 diabetes , 2018, Diabetologia.
[4] Matej Oresic,et al. Dynamics of Plasma Lipidome in Progression to Islet Autoimmunity and Type 1 Diabetes – Type 1 Diabetes Prediction and Prevention Study (DIPP) , 2018, Scientific Reports.
[5] S. Virtanen,et al. Early Infant Diet and Islet Autoimmunity in the TEDDY Study , 2018, Diabetes Care.
[6] C. de Beaufort,et al. Effect of Hydrolyzed Infant Formula vs Conventional Formula on Risk of Type 1 Diabetes: The TRIGR Randomized Clinical Trial , 2018, JAMA.
[7] Oliver Fiehn,et al. Validating Quantitative Untargeted Lipidomics Across Nine Liquid Chromatography-High-Resolution Mass Spectrometry Platforms. , 2017, Analytical chemistry.
[8] O. Fiehn,et al. Chemical Similarity Enrichment Analysis (ChemRICH) as alternative to biochemical pathway mapping for metabolomic datasets , 2017, Scientific Reports.
[9] C. Blesso,et al. Dietary and Endogenous Sphingolipid Metabolism in Chronic Inflammation , 2017, Nutrients.
[10] S. Virtanen,et al. Plasma 25-Hydroxyvitamin D Concentration and Risk of Islet Autoimmunity , 2017, Diabetes.
[11] S. Virtanen,et al. Development of a harmonized food grouping system for between-country comparisons in the TEDDY Study. , 2017, Journal of food composition and analysis : an official publication of the United Nations University, International Network of Food Data Systems.
[12] Å. Lernmark,et al. The Influence of Type 1 Diabetes Genetic Susceptibility Regions, Age, Sex, and Family History on the Progression From Multiple Autoantibodies to Type 1 Diabetes: A TEDDY Study Report , 2017, Diabetes.
[13] J. Ilonen,et al. Fatty acid status in infancy is associated with the risk of type 1 diabetes-associated autoimmunity , 2017, Diabetologia.
[14] M. Rewers,et al. Late-onset islet autoimmunity in childhood: the Diabetes Autoimmunity Study in the Young (DAISY) , 2017, Diabetologia.
[15] M. Orešič,et al. Longitudinal plasma metabolic profiles, infant feeding, and islet autoimmunity in the MIDIA study , 2017, Pediatric diabetes.
[16] Paul Flicek,et al. Increased DNA methylation variability in type 1 diabetes across three immune effector cell types , 2016, Nature Communications.
[17] Gunnel Tybring,et al. Metabolomic Quality Assessment of EDTA Plasma and Serum Samples. , 2016, Biopreservation and biobanking.
[18] M. Schulze,et al. Evaluating dietary patterns: the role of reduced rank regression , 2016, Current opinion in clinical nutrition and metabolic care.
[19] O. Fiehn. Metabolomics by Gas Chromatography–Mass Spectrometry: Combined Targeted and Untargeted Profiling , 2016, Current protocols in molecular biology.
[20] J. Ilonen,et al. Serum 25-Hydroxyvitamin D Concentrations in Children Progressing to Autoimmunity and Clinical Type 1 Diabetes. , 2016, The Journal of clinical endocrinology and metabolism.
[21] S. Virtanen,et al. Dietary intake of soluble fiber and risk of islet autoimmunity by 5 y of age: results from the TEDDY study. , 2015, The American journal of clinical nutrition.
[22] Miranda E. Kroehl,et al. Sugar intake is associated with progression from islet autoimmunity to type 1 diabetes: the Diabetes Autoimmunity Study in the Young , 2015, Diabetologia.
[23] E. Bonifacio,et al. The 6 year incidence of diabetes-associated autoantibodies in genetically at-risk children: the TEDDY study , 2015, Diabetologia.
[24] Melissa R. Miller,et al. The effect of childhood cow's milk intake and HLA‐DR genotype on risk of islet autoimmunity and type 1 diabetes: The Diabetes Autoimmunity Study in the Young , 2015, Pediatric Diabetes.
[25] A. Salminen,et al. Krebs cycle dysfunction shapes epigenetic landscape of chromatin: novel insights into mitochondrial regulation of aging process. , 2014, Cellular signalling.
[26] Å. Lernmark,et al. Biomarker discovery study design for type 1 diabetes in The Environmental Determinants of Diabetes in the Young (TEDDY) study , 2014, Diabetes/metabolism research and reviews.
[27] Sarah Spiegel,et al. Sphingolipid metabolites in inflammatory disease , 2014, Nature.
[28] Miranda E. Kroehl,et al. Erythrocyte membrane docosapentaenoic acid levels are associated with islet autoimmunity: the Diabetes Autoimmunity Study in the Young , 2014, Diabetologia.
[29] Å. Lernmark,et al. Decreased Cord-Blood Phospholipids in Young Age–at–Onset Type 1 Diabetes , 2013, Diabetes.
[30] J. Ilonen,et al. Cord Serum Lipidome in Prediction of Islet Autoimmunity and Type 1 Diabetes , 2013, Diabetes.
[31] E. Bonifacio,et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. , 2013, JAMA.
[32] S. Zeisel. Metabolic crosstalk between choline/1-carbon metabolism and energy homeostasis , 2013, Clinical chemistry and laboratory medicine.
[33] P. Meikle,et al. Roles of ceramide and sphingolipids in pancreatic β-cell function and dysfunction , 2012, Islets.
[34] M. Kenward,et al. Food consumption and advanced β cell autoimmunity in young children with HLA-conferred susceptibility to type 1 diabetes: a nested case-control design. , 2012, The American journal of clinical nutrition.
[35] Eva M. Schmelz,et al. Suppression of intestinal inflammation and inflammation-driven colon cancer in mice by dietary sphingomyelin: importance of peroxisome proliferator-activated receptor γ expression. , 2011, The Journal of nutritional biochemistry.
[36] Melissa R. Miller,et al. Erythrocyte membrane omega‐3 fatty acid levels and omega‐3 fatty acid intake are not associated with conversion to type 1 diabetes in children with islet autoimmunity: The Diabetes Autoimmunity Study in the Young (DAISY) , 2011, Pediatric diabetes.
[37] E. Bonifacio,et al. Age- and Islet Autoimmunity–Associated Differences in Amino Acid and Lipid Metabolites in Children at Risk for Type 1 Diabetes , 2011, Diabetes.
[38] M. Rewers,et al. No association of vitamin D intake or 25-hydroxyvitamin D levels in childhood with risk of islet autoimmunity and type 1 diabetes: the Diabetes Autoimmunity Study in the Young (DAISY) , 2011, Diabetologia.
[39] Joshua D. Knowles,et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry , 2011, Nature Protocols.
[40] M. Kenward,et al. Serum fatty acids and risk of advanced β-cell autoimmunity: a nested case–control study among children with HLA-conferred susceptibility to type I diabetes , 2010, European Journal of Clinical Nutrition.
[41] O. Fiehn,et al. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. , 2009, Analytical chemistry.
[42] Olli Simell,et al. Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes , 2008, The Journal of experimental medicine.
[43] Peter Kraft,et al. Comparison of 3 methods for identifying dietary patterns associated with risk of disease. , 2008, American journal of epidemiology.
[44] M. Knip,et al. Variation within the PPARG gene is associated with residual beta‐cell function and glycemic control in children and adolescents during the first year of clinical type 1 diabetes , 2008, Pediatric diabetes.
[45] Å. Lernmark,et al. The Environmental Determinants of Diabetes in the Young (TEDDY) study: study design , 2007, Pediatric diabetes.
[46] M. Rewers,et al. Omega-3 polyunsaturated fatty acid intake and islet autoimmunity in children at increased risk for type 1 diabetes. , 2007, JAMA.
[47] Heiner Boeing,et al. Application of a new statistical method to derive dietary patterns in nutritional epidemiology. , 2004, American journal of epidemiology.
[48] P. Trumbo,et al. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. , 2002, Journal of the American Dietetic Association.
[49] Elina Hyppönen,et al. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study , 2001, The Lancet.
[50] S. Lange,et al. Adjusting for multiple testing--when and how? , 2001, Journal of clinical epidemiology.
[51] Hilko van der Voet,et al. Comparing the predictive accuracy of models using a simple randomization test , 1994 .
[52] D. Cox,et al. An Analysis of Transformations , 1964 .
[53] Laura Marshall,et al. Type 1 diabetes mellitus , 2017, Nature Reviews Disease Primers.
[54] P. Sedgwick,et al. Study design , 1986, BMJ : British Medical Journal.
[55] J. Manson,et al. Dietary pattern, inflammation, and incidence of type 2 diabetes in women. , 2005, The American journal of clinical nutrition.
[56] M. Singer,et al. Nutritional Epidemiology , 2020, Definitions.