The TEDDY Study Group, al., E. (2019). Metabolite-related dietary patterns and the development of islet autoimmunity. Scientific Reports

, , , The role of diet in type 1 diabetes development is poorly understood. Metabolites, which reflect dietary response, may help elucidate this role. We explored metabolomics and lipidomics differences between 352 cases of islet autoimmunity (IA) and controls in the TEDDY (The Environmental Determinants of Diabetes in the Young) study. We created dietary patterns reflecting pre-IA metabolite differences between groups and examined their association with iA. Secondary outcomes included iA cases positive for multiple autoantibodies (mAb + ). The association of 853 plasma metabolites with outcomes was tested at seroconversion to iA, just prior to seroconversion, and during infancy. Key compounds in enriched metabolite sets were used to create dietary patterns reflecting metabolite composition, which were then tested for association with outcomes in the nested case-control subset and the full teDDY cohort. Unsaturated phosphatidylcholines, sphingomyelins, phosphatidylethanolamines, glucosylceramides, and phospholipid ethers in infancy were inversely associated with mAb + risk, while dicarboxylic acids were associated with an increased risk. An infancy dietary pattern representing higher levels of unsaturated phosphatidylcholines of Diabetes in the Young (TEDDY) study. We conducted a metabolome- and lipidome-wide association study to better characterize plasma metabolites and lipids distinguishing cases and controls both at the time of the first autoantibody detection, and prior to its development. We created dietary patterns summarizing candidate metabolites identified pre-IA, and tested the longitudinal association of those metabolite-related dietary patterns with the development of IA.

Fiske | Polly | Kendra | E. Bonifacio | J. Ilonen | M. Knip | H. Parikh | Hye-Seung Lee | B. Burkhardt | Susan B. Smith | C. Eberhard | O. Simell | T. Gard | Kathleen C. Waugh | A. Steck | R. McIndoe | Liping Yu | T. Kind | S. Simell | A. Hekkala | H. Hyöty | R. Veijola | Gert Wohlgemuth | K. Heyman | K. Driscoll | Suzanne | M. Koivikko | M. Ask | S. Ruohonen | D. Cuthbertson | D. Agardh | Markus Mattila | L. Jacobsen | S. Hummel | S. Niinistö | D. Miao | K. Lindfors | Julia Schwabe | Jimin Yang | Ashok Sharma | John Marks | Noah Sulman | J. Baxter | K. Bourcier | Marlon Scholz | K. Warncke | Katherine Silvis | C. Aronsson | Xiang Liu | R. Tamura | A. Riikonen | H. Larsson | M. Lönnrot | S. Oikarinen | D. Hopkins | Tiina Niininen | Jamie Malloy | E. Liu | Steven | A. Williams | Meulemans | Luis Valdiviez | M. Lundgren | R. Lyons | Rasheedah Brown | Mari Åkerlund | B. Sjöberg | A. Ramelius | Andrea | Laura | Mari Vähä-Mäkilä | J. Melin | Patricia Gesualdo | Rachel Karban | H. Holappa | A. Ikonen | Sanna Jokipuu | Mirva Koreasalo | Jarita Kytölä | Tiina Latva-aho | Katja Multasuo | Teija Mykkänen | Paula Ollikainen | Sirpa Pohjola | J. Rautanen | Minna Romo | Aino Stenius | E. Varjonen | Irene Viinikangas | M. Gardiner | Cigdem Gezginci | Anja Heublein | Charlotte Koch | Claudia Ramminger | Joanna Stock | L. Wendel | Lina Fransson | M. Hansen | Susanne Hyberg | Marielle Lindström | Zeliha Mestan | F. Salami | Anette Sjöberg | C. Crouch | J. Skidmore | Arlene Meyer | Denise Mulenga | J. Radtke | Davey Schmitt | S. Zink | Maryouri Avendano | Sandra Baethke | Martha D. Butterworth | Joanna Clasen | Jennifer Garmeson | Veena Gowda | Belinda Hsiao | Qian Li | Shu Liu | Dena Tewey | M. Toth | Ponni Vijayakandipan | Francisco Perez Laras | C. Maguire | A. Merrell | Ryan Quigley | Bennett Johnson | Ahonen | I. Kelland | O. Ball | K. Chandler | Schatz | Michael | Smith | Berglind | L. Karlsson | Miia Kähönen | M. Nyblom | Åsa Wimar | Michael B Killian | Sandra Ke | Niveen Mulholland | S. Grace | Anne P. Wallin | Karin Ottosson | J. Bremer | F. Johansen | Silvija Jovic | Sini Vainionpää | Petra Rajala | Desmond | Rasmus | Anita | Elina | Jonsdottir | Jared | Christiane | Winkler | Kristián | Gonzalez | Keimer | Roth | Benjamin Wancewicz | Marisa Gallant | Sinikka Jäminki | Maija Sjöberg | Jennifer Bryant | Miryam D’Angelo | Sibylle Koletzko | Hanna Jisser | Maria Månsson-Martinez | Maria Markan | Masumeh Chavoshi | Kayleen Dunson | R. Hervey | Matei Romancik | Cassandra L Remedios | K. Wood | J. Wong | Kalle | Radtke | Haller | D. Grapov | Ben | S. Koletzko | Annika Adamsson | Leigh Steed | Stephen W. Anderson | Daniel felipe-Morales | C. Nilsson | cristina Mccarthy | Kobra Rahmati | Suvi | Kurppa | Mäntymäki | Gavrisan | Roswith | Bennet | -. SarahAustin | Christina | Karges | Lynch | Vehik | Bingley | Gillard

[1]  H. Siljander,et al.  Cord-Blood Lipidome in Progression to Islet Autoimmunity and Type 1 Diabetes , 2019, Biomolecules.

[2]  I. Giegling,et al.  The human metabolic profile reflects macro- and micronutrient intake distinctly according to fasting time , 2018, Scientific Reports.

[3]  F. Pociot,et al.  Abnormal islet sphingolipid metabolism in type 1 diabetes , 2018, Diabetologia.

[4]  Matej Oresic,et al.  Dynamics of Plasma Lipidome in Progression to Islet Autoimmunity and Type 1 Diabetes – Type 1 Diabetes Prediction and Prevention Study (DIPP) , 2018, Scientific Reports.

[5]  S. Virtanen,et al.  Early Infant Diet and Islet Autoimmunity in the TEDDY Study , 2018, Diabetes Care.

[6]  C. de Beaufort,et al.  Effect of Hydrolyzed Infant Formula vs Conventional Formula on Risk of Type 1 Diabetes: The TRIGR Randomized Clinical Trial , 2018, JAMA.

[7]  Oliver Fiehn,et al.  Validating Quantitative Untargeted Lipidomics Across Nine Liquid Chromatography-High-Resolution Mass Spectrometry Platforms. , 2017, Analytical chemistry.

[8]  O. Fiehn,et al.  Chemical Similarity Enrichment Analysis (ChemRICH) as alternative to biochemical pathway mapping for metabolomic datasets , 2017, Scientific Reports.

[9]  C. Blesso,et al.  Dietary and Endogenous Sphingolipid Metabolism in Chronic Inflammation , 2017, Nutrients.

[10]  S. Virtanen,et al.  Plasma 25-Hydroxyvitamin D Concentration and Risk of Islet Autoimmunity , 2017, Diabetes.

[11]  S. Virtanen,et al.  Development of a harmonized food grouping system for between-country comparisons in the TEDDY Study. , 2017, Journal of food composition and analysis : an official publication of the United Nations University, International Network of Food Data Systems.

[12]  Å. Lernmark,et al.  The Influence of Type 1 Diabetes Genetic Susceptibility Regions, Age, Sex, and Family History on the Progression From Multiple Autoantibodies to Type 1 Diabetes: A TEDDY Study Report , 2017, Diabetes.

[13]  J. Ilonen,et al.  Fatty acid status in infancy is associated with the risk of type 1 diabetes-associated autoimmunity , 2017, Diabetologia.

[14]  M. Rewers,et al.  Late-onset islet autoimmunity in childhood: the Diabetes Autoimmunity Study in the Young (DAISY) , 2017, Diabetologia.

[15]  M. Orešič,et al.  Longitudinal plasma metabolic profiles, infant feeding, and islet autoimmunity in the MIDIA study , 2017, Pediatric diabetes.

[16]  Paul Flicek,et al.  Increased DNA methylation variability in type 1 diabetes across three immune effector cell types , 2016, Nature Communications.

[17]  Gunnel Tybring,et al.  Metabolomic Quality Assessment of EDTA Plasma and Serum Samples. , 2016, Biopreservation and biobanking.

[18]  M. Schulze,et al.  Evaluating dietary patterns: the role of reduced rank regression , 2016, Current opinion in clinical nutrition and metabolic care.

[19]  O. Fiehn Metabolomics by Gas Chromatography–Mass Spectrometry: Combined Targeted and Untargeted Profiling , 2016, Current protocols in molecular biology.

[20]  J. Ilonen,et al.  Serum 25-Hydroxyvitamin D Concentrations in Children Progressing to Autoimmunity and Clinical Type 1 Diabetes. , 2016, The Journal of clinical endocrinology and metabolism.

[21]  S. Virtanen,et al.  Dietary intake of soluble fiber and risk of islet autoimmunity by 5 y of age: results from the TEDDY study. , 2015, The American journal of clinical nutrition.

[22]  Miranda E. Kroehl,et al.  Sugar intake is associated with progression from islet autoimmunity to type 1 diabetes: the Diabetes Autoimmunity Study in the Young , 2015, Diabetologia.

[23]  E. Bonifacio,et al.  The 6 year incidence of diabetes-associated autoantibodies in genetically at-risk children: the TEDDY study , 2015, Diabetologia.

[24]  Melissa R. Miller,et al.  The effect of childhood cow's milk intake and HLA‐DR genotype on risk of islet autoimmunity and type 1 diabetes: The Diabetes Autoimmunity Study in the Young , 2015, Pediatric Diabetes.

[25]  A. Salminen,et al.  Krebs cycle dysfunction shapes epigenetic landscape of chromatin: novel insights into mitochondrial regulation of aging process. , 2014, Cellular signalling.

[26]  Å. Lernmark,et al.  Biomarker discovery study design for type 1 diabetes in The Environmental Determinants of Diabetes in the Young (TEDDY) study , 2014, Diabetes/metabolism research and reviews.

[27]  Sarah Spiegel,et al.  Sphingolipid metabolites in inflammatory disease , 2014, Nature.

[28]  Miranda E. Kroehl,et al.  Erythrocyte membrane docosapentaenoic acid levels are associated with islet autoimmunity: the Diabetes Autoimmunity Study in the Young , 2014, Diabetologia.

[29]  Å. Lernmark,et al.  Decreased Cord-Blood Phospholipids in Young Age–at–Onset Type 1 Diabetes , 2013, Diabetes.

[30]  J. Ilonen,et al.  Cord Serum Lipidome in Prediction of Islet Autoimmunity and Type 1 Diabetes , 2013, Diabetes.

[31]  E. Bonifacio,et al.  Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. , 2013, JAMA.

[32]  S. Zeisel Metabolic crosstalk between choline/1-carbon metabolism and energy homeostasis , 2013, Clinical chemistry and laboratory medicine.

[33]  P. Meikle,et al.  Roles of ceramide and sphingolipids in pancreatic β-cell function and dysfunction , 2012, Islets.

[34]  M. Kenward,et al.  Food consumption and advanced β cell autoimmunity in young children with HLA-conferred susceptibility to type 1 diabetes: a nested case-control design. , 2012, The American journal of clinical nutrition.

[35]  Eva M. Schmelz,et al.  Suppression of intestinal inflammation and inflammation-driven colon cancer in mice by dietary sphingomyelin: importance of peroxisome proliferator-activated receptor γ expression. , 2011, The Journal of nutritional biochemistry.

[36]  Melissa R. Miller,et al.  Erythrocyte membrane omega‐3 fatty acid levels and omega‐3 fatty acid intake are not associated with conversion to type 1 diabetes in children with islet autoimmunity: The Diabetes Autoimmunity Study in the Young (DAISY) , 2011, Pediatric diabetes.

[37]  E. Bonifacio,et al.  Age- and Islet Autoimmunity–Associated Differences in Amino Acid and Lipid Metabolites in Children at Risk for Type 1 Diabetes , 2011, Diabetes.

[38]  M. Rewers,et al.  No association of vitamin D intake or 25-hydroxyvitamin D levels in childhood with risk of islet autoimmunity and type 1 diabetes: the Diabetes Autoimmunity Study in the Young (DAISY) , 2011, Diabetologia.

[39]  Joshua D. Knowles,et al.  Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry , 2011, Nature Protocols.

[40]  M. Kenward,et al.  Serum fatty acids and risk of advanced β-cell autoimmunity: a nested case–control study among children with HLA-conferred susceptibility to type I diabetes , 2010, European Journal of Clinical Nutrition.

[41]  O. Fiehn,et al.  FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. , 2009, Analytical chemistry.

[42]  Olli Simell,et al.  Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes , 2008, The Journal of experimental medicine.

[43]  Peter Kraft,et al.  Comparison of 3 methods for identifying dietary patterns associated with risk of disease. , 2008, American journal of epidemiology.

[44]  M. Knip,et al.  Variation within the PPARG gene is associated with residual beta‐cell function and glycemic control in children and adolescents during the first year of clinical type 1 diabetes , 2008, Pediatric diabetes.

[45]  Å. Lernmark,et al.  The Environmental Determinants of Diabetes in the Young (TEDDY) study: study design , 2007, Pediatric diabetes.

[46]  M. Rewers,et al.  Omega-3 polyunsaturated fatty acid intake and islet autoimmunity in children at increased risk for type 1 diabetes. , 2007, JAMA.

[47]  Heiner Boeing,et al.  Application of a new statistical method to derive dietary patterns in nutritional epidemiology. , 2004, American journal of epidemiology.

[48]  P. Trumbo,et al.  Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. , 2002, Journal of the American Dietetic Association.

[49]  Elina Hyppönen,et al.  Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study , 2001, The Lancet.

[50]  S. Lange,et al.  Adjusting for multiple testing--when and how? , 2001, Journal of clinical epidemiology.

[51]  Hilko van der Voet,et al.  Comparing the predictive accuracy of models using a simple randomization test , 1994 .

[52]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[53]  Laura Marshall,et al.  Type 1 diabetes mellitus , 2017, Nature Reviews Disease Primers.

[54]  P. Sedgwick,et al.  Study design , 1986, BMJ : British Medical Journal.

[55]  J. Manson,et al.  Dietary pattern, inflammation, and incidence of type 2 diabetes in women. , 2005, The American journal of clinical nutrition.

[56]  M. Singer,et al.  Nutritional Epidemiology , 2020, Definitions.