Dynamic Cholesterol-Conditioned Dimerization of the G Protein Coupled Chemokine Receptor Type 4

G protein coupled receptors (GPCRs) allow for the transmission of signals across biological membranes. For a number of GPCRs, this signaling was shown to be coupled to prior dimerization of the receptor. The chemokine receptor type 4 (CXCR4) was reported before to form dimers and their functionality was shown to depend on membrane cholesterol. Here, we address the dimerization pattern of CXCR4 in pure phospholipid bilayers and in cholesterol-rich membranes. Using ensembles of molecular dynamics simulations, we show that CXCR4 dimerizes promiscuously in phospholipid membranes. Addition of cholesterol dramatically affects the dimerization pattern: cholesterol binding largely abolishes the preferred dimer motif observed for pure phospholipid bilayers formed mainly by transmembrane helices 1 and 7 (TM1/TM5-7) at the dimer interface. In turn, the symmetric TM3,4/TM3,4 interface is enabled first by intercalating cholesterol molecules. These data provide a molecular basis for the modulation of GPCR activity by its lipid environment.

[1]  Marta Filizola,et al.  Crosstalk in G protein-coupled receptors: changes at the transmembrane homodimer interface determine activation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[3]  Helgi I. Ingólfsson,et al.  Computational Lipidomics with insane: A Versatile Tool for Generating Custom Membranes for Molecular Simulations. , 2015, Journal of chemical theory and computation.

[4]  M. Karplus,et al.  Evaluation of comparative protein modeling by MODELLER , 1995, Proteins.

[5]  C. Combs,et al.  Dimerization of CXCR4 in living malignant cells: control of cell migration by a synthetic peptide that reduces homologous CXCR4 interactions , 2006, Molecular Cancer Therapeutics.

[6]  J. Ramachandran,et al.  Structure and Function of G Protein Coupled Receptors , 1990, Pharmaceutical Research.

[7]  Irina S. Moreira,et al.  Allosteric communication between protomers of dopamine Class A GPCR dimers modulates activation , 2009, Nature chemical biology.

[8]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[9]  A. Chattopadhyay,et al.  Cholesterol modulates the dimer interface of the β₂-adrenergic receptor via cholesterol occupancy sites. , 2014, Biophysical journal.

[10]  Thomas Huber,et al.  Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes. , 2006, Biophysical journal.

[11]  L. Pardo,et al.  Crystal structure of the μ-opioid receptor bound to a morphinan antagonist , 2012, Nature.

[12]  A. Engel,et al.  The G protein‐coupled receptor rhodopsin in the native membrane , 2004, FEBS letters.

[13]  Hao Wang,et al.  Assessing the Relative Stability of Dimer Interfaces in G Protein-Coupled Receptors , 2012, PLoS Comput. Biol..

[14]  Kurt Wüthrich,et al.  Biased Signaling Pathways in β2-Adrenergic Receptor Characterized by 19F-NMR , 2012, Science.

[15]  P. Biggin,et al.  Molecular dynamics simulations of membrane proteins. , 2008, Methods in molecular biology.

[16]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[17]  Stephen M. Husbands,et al.  Structural insights into μ-opioid receptor activation , 2015, Nature.

[18]  Vadim Cherezov,et al.  Diversity and modularity of G protein-coupled receptor structures. , 2012, Trends in pharmacological sciences.

[19]  D. Larhammar,et al.  Embryonic expression of the mRNA for the rat homologue of the fusin/CXCR-4 HIV-1 co-receptor , 1997, Journal of Neuroimmunology.

[20]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[22]  L. Prézeau,et al.  Functional crosstalk between GPCRs: with or without oligomerization. , 2010, Current opinion in pharmacology.

[23]  C. Combs,et al.  Dimerization of CXCR 4 in living malignant cells : control of cell migration by a synthetic peptide that reduces homologous CXCR 4 interactions , 2006 .

[24]  R. Stevens,et al.  High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor , 2007, Science.

[25]  Siewert J Marrink,et al.  Going Backward: A Flexible Geometric Approach to Reverse Transformation from Coarse Grained to Atomistic Models. , 2014, Journal of chemical theory and computation.

[26]  Vadim Cherezov,et al.  A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. , 2008, Structure.

[27]  Helmut Grubmüller,et al.  Determining equilibrium constants for dimerization reactions from molecular dynamics simulations , 2011, J. Comput. Chem..

[28]  Christoph Seibert,et al.  Structural Basis of CXCR4 Sulfotyrosine Recognition by the Chemokine SDF-1/CXCL12 , 2008, Science Signaling.

[29]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[30]  M. Baggiolini,et al.  Two murine homologues of the human chemokine receptor CXCR4 mediating stromal cell‐derived factor 1α activation of Gi2 are differentially expressed in vivo , 1997, European journal of immunology.

[31]  Hualiang Jiang,et al.  Structure of the CCR5 Chemokine Receptor–HIV Entry Inhibitor Maraviroc Complex , 2013, Science.

[32]  Jianfeng Liu,et al.  Major ligand-induced rearrangement of the heptahelical domain interface in a GPCR dimer. , 2015, Nature chemical biology.

[33]  C. Simmerling,et al.  ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. , 2015, Journal of chemical theory and computation.

[34]  Thomas Huber,et al.  G protein-coupled receptors self-assemble in dynamics simulations of model bilayers. , 2007, Journal of the American Chemical Society.

[35]  D. Tieleman,et al.  High-Throughput Simulations of Dimer and Trimer Assembly of Membrane Proteins. The DAFT Approach. , 2015, Journal of chemical theory and computation.

[36]  Wayne A Hendrickson,et al.  Ligand sensitivity in dimeric associations of the serotonin 5HT2c receptor , 2008, EMBO reports.

[37]  P. Toth,et al.  Regulation of CXCR4 Receptor Dimerization by the Chemokine SDF-1α and the HIV-1 Coat Protein gp120: A Fluorescence Resonance Energy Transfer (FRET) Study , 2004, Journal of Pharmacology and Experimental Therapeutics.

[38]  R. Stevens,et al.  Structure of the human k-opioid receptor in complex with JDTic , 2012 .

[39]  Davide Provasi,et al.  Preferred Supramolecular Organization and Dimer Interfaces of Opioid Receptors from Simulated Self-Association , 2015, PLoS Comput. Biol..

[40]  Michel Bouvier,et al.  Bioluminescence Resonance Energy Transfer Reveals Ligand-induced Conformational Changes in CXCR4 Homo- and Heterodimers* , 2005, Journal of Biological Chemistry.

[41]  R. Stevens,et al.  Structural Basis for Allosteric Regulation of GPCRs by Sodium Ions , 2012, Science.

[42]  Z. Hall Cancer , 1906, The Hospital.

[43]  Durba Sengupta,et al.  Identification of cholesterol binding sites in the serotonin1A receptor. , 2012, The journal of physical chemistry. B.

[44]  Benjamin D. Madej,et al.  Lipid14: The Amber Lipid Force Field , 2014, Journal of chemical theory and computation.

[45]  A. Chattopadhyay,et al.  Identi fi cation of Cholesterol Binding Sites in the Serotonin 1 A Receptor , 2012 .

[46]  Steven M. Moss,et al.  Structure of the human P2Y12 receptor in complex with an antithrombotic drug , 2014, Nature.

[47]  T. Mcclanahan,et al.  Involvement of chemokine receptors in breast cancer metastasis , 2001, Nature.

[48]  Patrick Scheerer,et al.  Crystal structure of the ligand-free G-protein-coupled receptor opsin , 2008, Nature.

[49]  Jianyun Huang,et al.  Crystal Structure of Oligomeric β1-Adrenergic G Protein- Coupled Receptors in Ligand-Free Basal State , 2013, Nature Structural &Molecular Biology.

[50]  Andreas P. Eichenberger,et al.  Definition and testing of the GROMOS force-field versions 54A7 and 54B7 , 2011, European Biophysics Journal.

[51]  Gregory J Babcock,et al.  Ligand-independent Dimerization of CXCR4, a Principal HIV-1 Coreceptor* , 2003, The Journal of Biological Chemistry.

[52]  W F Drew Bennett,et al.  Improved Parameters for the Martini Coarse-Grained Protein Force Field. , 2013, Journal of chemical theory and computation.

[53]  Kristyna Pluhackova,et al.  A Critical Comparison of Biomembrane Force Fields: Structure and Dynamics of Model DMPC, POPC, and POPE Bilayers. , 2016, The journal of physical chemistry. B.

[54]  A. Mark,et al.  Coarse grained model for semiquantitative lipid simulations , 2004 .

[55]  Tsjerk A. Wassenaar,et al.  Mixing MARTINI: electrostatic coupling in hybrid atomistic-coarse-grained biomolecular simulations. , 2013, The journal of physical chemistry. B.

[56]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[57]  Alexander D. MacKerell,et al.  Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. , 2012, Journal of chemical theory and computation.

[58]  Bryan L. Roth,et al.  Structure of the human kappa opioid receptor in complex with JDTic , 2012, Nature.

[59]  G. Watkins,et al.  The elevated level of CXCR4 is correlated with nodal metastasis of human breast cancer. , 2005, Breast.

[60]  L. Prézeau,et al.  Dimers and beyond: The functional puzzles of class C GPCRs. , 2011, Pharmacology & therapeutics.

[61]  D. Taub,et al.  CXCR4 Function Requires Membrane Cholesterol: Implications for HIV Infection , 2002, The Journal of Immunology.

[62]  R. Jockers,et al.  Asymmetry of GPCR oligomers supports their functional relevance. , 2011, Trends in pharmacological sciences.

[63]  Paul E. Kennedy,et al.  HIV-1 Entry Cofactor: Functional cDNA Cloning of a Seven-Transmembrane, G Protein-Coupled Receptor , 1996, Science.

[64]  V. Helms,et al.  Putative cholesterol‐binding sites in human immunodeficiency virus (HIV) coreceptors CXCR4 and CCR5 , 2013, Proteins.

[65]  R. Abagyan,et al.  Structures of the CXCR4 Chemokine GPCR with Small-Molecule and Cyclic Peptide Antagonists , 2010, Science.

[66]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[67]  Siewert J Marrink,et al.  Structural determinants of the supramolecular organization of G protein-coupled receptors in bilayers. , 2012, Journal of the American Chemical Society.

[68]  Ruben Abagyan,et al.  Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine , 2015, Science.

[69]  S. Rasmussen,et al.  The structure and function of G-protein-coupled receptors , 2009, Nature.

[70]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[71]  J. Åqvist,et al.  Ion-water interaction potentials derived from free energy perturbation simulations , 1990 .

[72]  C. Martínez-A,et al.  The chemokine SDF‐lα triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway , 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.