Comparison of heuristic and empirical approaches for estimating reference evapotranspiration from limited inputs in Iran

Artificial intelligence and empirical ET0 models are evaluated.Local and regional scenarios were developed and tested.GEP outperforms the other applied models in ET0 estimation.Arid regions offer the lowest accuracies among the studied stations. Accurate estimation of reference evapotranspiration (ET0) values is of crucial importance in hydrology, agriculture and agro-meteorology issues. The present study reports a comprehensive comparison of empirical and semi empirical ET0 equations with the corresponding Heuristic Data Driven (HDD) models in a wide range of weather stations in Iran. Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference System (ANFIS), Support Vector Machine (SVM) and Gene Expression Programming (GEP) techniques are applied for modeling ET0 values considering different data management scenarios, and compared with corresponding Hargreaves-Samani (HS), Makkink (MK), Priestley-Taylor (PT), and Turc (T) ET0 models as well as their linear and non-linear calibrated versions along with the regression-based Copais algorithm. The obtained results confirm the superiority of GEP-based models. Further, the HDD models generally outperform the applied empirical models. Among the empirical models, the calibrated HS model found to give the most accurate results in all local and pooled scenarios, followed by the Copais and the calibrated PT models. In both local and pooled applications, the calibrated HS equation should be applied when no training data are available for the use of HDD models. The best results of the models correspond to the humid regions, while the arid regions provide the poorest estimates. This may be attributed to higher ET0 values associated with these stations and the high advective component of these locations.

[1]  Hung Soo Kim,et al.  Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling , 2008 .

[2]  Hossein Tabari,et al.  Local Calibration of the Hargreaves and Priestley-Taylor Equations for Estimating Reference Evapotranspiration in Arid and Cold Climates of Iran Based on the Penman-Monteith Model , 2011 .

[3]  George H. Hargreaves,et al.  Reference Crop Evapotranspiration from Temperature , 1985 .

[4]  O. Kisi,et al.  Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain) , 2012 .

[5]  P. Gavilán,et al.  Reference Evapotranspiration Estimation in a Highly Advective Semiarid Environment , 2005 .

[6]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[7]  Hossein Dehghanisanij,et al.  Assessment of evapotranspiration estimation models for use in semi-arid environments , 2004 .

[8]  Slavisa Trajkovic,et al.  Wind-adjusted Turc equation for estimating reference evapotranspiration at humid European locations , 2009 .

[9]  R. López-Urrea,et al.  Testing evapotranspiration equations using lysimeter observations in a semiarid climate , 2006 .

[10]  Ozgur Kisi,et al.  Daily pan evaporation modelling using a neuro-fuzzy computing technique , 2006 .

[11]  Gorka Landeras,et al.  Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain) , 2008 .

[12]  D. Legates,et al.  Evaluating the use of “goodness‐of‐fit” Measures in hydrologic and hydroclimatic model validation , 1999 .

[13]  Ozgur Kisi,et al.  Estimating daily reference evapotranspiration using available and estimated climatic data by adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) , 2013 .

[14]  N. S. Raghuwanshi,et al.  Artificial neural networks approach in evapotranspiration modeling: a review , 2010, Irrigation Science.

[15]  Vijay P. Singh,et al.  Evaluation of gene expression programming approaches for estimating daily evaporation through spatial and temporal data scanning , 2014 .

[16]  Amin Elshorbagy,et al.  Modelling the dynamics of the evapotranspiration process using genetic programming , 2007 .

[17]  A. R. Khoob,et al.  Comparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semiarid environment , 2008, Irrigation science.

[18]  David S. G. Thomas,et al.  World atlas of desertification. , 1994 .

[19]  P. Hosseinzadeh Talaee,et al.  Artificial neural network–genetic algorithm for estimation of crop evapotranspiration in a semi-arid region of Iran , 2012, Neural Computing and Applications.

[20]  K. P. Sudheer,et al.  Estimating Actual Evapotranspiration from Limited Climatic Data Using Neural Computing Technique , 2003 .

[21]  Slavisa Trajkovic,et al.  Comparative analysis of 31 reference evapotranspiration methods under humid conditions , 2011, Irrigation Science.

[22]  Cândida Ferreira,et al.  Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence , 2014, Studies in Computational Intelligence.

[23]  W. O. Pruitt,et al.  Crop water requirements , 1997 .

[24]  Hossein Tabari,et al.  Regional Estimation of Reference Evapotranspiration in Arid and Semiarid Regions , 2010 .

[25]  William O. Pruitt,et al.  Adaptation of the Thornthwaite scheme for estimating daily reference evapotranspiration , 2004 .

[26]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[27]  Ozgur Kisi,et al.  Global cross-station assessment of neuro-fuzzy models for estimating daily reference evapotranspiration , 2013 .

[28]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[29]  Hossein Tabari,et al.  Evaluation of Reference Crop Evapotranspiration Equations in Various Climates , 2010 .

[30]  S. S. Zanetti,et al.  Estimating Evapotranspiration Using Artificial Neural Network and Minimum Climatological Data , 2007 .

[31]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[32]  Hossein Tabari,et al.  Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression , 2010, Irrigation Science.

[33]  V. Singh,et al.  Estimating Daily Pan Evaporation Using Different Data-Driven Methods and Lag-Time Patterns , 2013, Water Resources Management.

[34]  Ozgur Kisi,et al.  Generalized Neurofuzzy Models for Estimating Daily Pan Evaporation Values from Weather Data , 2012 .

[35]  Guillermo Palau-Salvador,et al.  Generalization of ETo ANN Models through Data Supplanting , 2010 .

[36]  O. Kisi Comparison of Different Empirical Methods for Estimating Daily Reference Evapotranspiration in Mediterranean Climate , 2014 .

[37]  S. Gunn Support Vector Machines for Classification and Regression , 1998 .

[38]  Ozgur Kisi,et al.  Evaluation of different data management scenarios for estimating daily reference evapotranspiration , 2013 .

[39]  Pau Martí,et al.  Ancillary data supply strategies for improvement of temperature-based ETo ANN models , 2010 .

[40]  A. R. Khoob,et al.  Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semi-arid environment , 2008, Irrigation Science.

[41]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[42]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[43]  Ozgur Kisi,et al.  Adaptive Neurofuzzy Computing Technique for Evapotranspiration Estimation , 2007 .

[44]  Pau Martí,et al.  Reference evapotranspiration estimation without local climatic data , 2011, Irrigation Science.

[45]  Jiusheng Li,et al.  Water and nitrate distributions as affected by layered-textural soil and buried dripline depth under subsurface drip fertigation , 2011, Irrigation Science.

[46]  Giuseppe Provenzano,et al.  Assessing a Local Losses Evaluation Procedure for Low-Pressure Lay-Flat Drip Laterals , 2014 .

[47]  Cândida Ferreira,et al.  Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence (Studies in Computational Intelligence) , 2006 .

[48]  Branimir Todorovic,et al.  Estimation of FAO Blaney-Criddle b Factor by RBF Network , 2000 .

[49]  P. Kerkides,et al.  Daily reference evapotranspiration estimates by the "Copais" approach , 2006 .

[50]  Ali Aytek,et al.  Co-active neurofuzzy inference system for evapotranspiration modeling , 2009, Soft Comput..

[51]  Slavisa Trajkovic,et al.  Testing hourly reference evapotranspiration approaches using lysimeter measurements in a semiarid climate. , 2010 .

[52]  Emrah Dogan,et al.  Reference evapotranspiration estimation using adaptive neuro‐fuzzy inference systems , 2009 .

[53]  Samuel O. Russell,et al.  Reservoir Operating Rules with Fuzzy Programming , 1996 .

[54]  L. S. Pereira,et al.  Revised FAO Procedures for Calculating Evapotranspiration: Irrigation and Drainage Paper No. 56 with Testing in Idaho , 2001 .

[55]  Alexander J. Smola,et al.  Support Vector Method for Function Approximation, Regression Estimation and Signal Processing , 1996, NIPS.

[56]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[57]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[58]  Slavisa Trajkovic,et al.  Hargreaves versus Penman-Monteith under Humid Conditions , 2007 .

[59]  O. Kisi,et al.  Pan Evaporation Modeling Using Neural Computing Approach for Different Climatic Zones , 2012, Water Resources Management.

[60]  C. Priestley,et al.  On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters , 1972 .

[61]  Shaozhong Kang,et al.  Artificial neural network models for reference evapotranspiration in an arid area of northwest China , 2012 .

[62]  Hossein Tabari,et al.  Evaluation of Class A Pan Coefficient Models for Estimation of Reference Crop Evapotranspiration in Cold Semi-Arid and Warm Arid Climates , 2010 .

[63]  O. Kisi,et al.  SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment , 2012 .

[64]  Hafzullah Aksoy,et al.  Genetic Programming‐Based Empirical Model for Daily Reference Evapotranspiration Estimation , 2008 .