Consensus CPHD Filter for Distributed Multitarget Tracking

The paper addresses distributed multitarget tracking over a network of heterogeneous and geographically dispersed nodes with sensing, communication and processing capabilities. The contribution has been to develop a novel consensus Gaussian Mixture-Cardinalized Probability Hypothesis Density (GM-CPHD) filter that provides a fully distributed, scalable and computationally efficient solution to the problem. The effectiveness of the proposed approach is demonstrated via simulation experiments on realistic scenarios.

[1]  G. Battistelli,et al.  An Information-Theoretic Approach to Distributed State Estimation , 2011 .

[2]  Jason L. Williams,et al.  Cost-function-based hypothesis control techniques for multiple hypothesis tracking , 2006, Math. Comput. Model..

[3]  Daniel E. Clark,et al.  Robust multi-object sensor fusion with unknown correlations , 2010 .

[4]  M. Hurley An information theoretic justification for covariance intersection and its generalization , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[5]  P. Mahalanobis,et al.  Analysis of race-mixture in Bengal , 1925 .

[6]  R. Mahler,et al.  PHD filters of higher order in target number , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[7]  Ba-Ngu Vo,et al.  Adaptive Target Birth Intensity for PHD and CPHD Filters , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[8]  D. Salmond Mixture reduction algorithms for target tracking , 1989 .

[9]  Milos S. Stankovic,et al.  Consensus based overlapping decentralized estimation with missing observations and communication faults , 2009, Autom..

[10]  Maryam Kamgarpour,et al.  Convergence properties of a decentralized Kalman filter , 2008, 2008 47th IEEE Conference on Decision and Control.

[11]  Ruggero Carli,et al.  Distributed Kalman filtering based on consensus strategies , 2008, IEEE Journal on Selected Areas in Communications.

[12]  Ba-Ngu Vo,et al.  On performance evaluation of multi-object filters , 2008, 2008 11th International Conference on Information Fusion.

[13]  Ba-Ngu Vo,et al.  A Consistent Metric for Performance Evaluation of Multi-Object Filters , 2008, IEEE Transactions on Signal Processing.

[14]  Simon J. Julier,et al.  Fusion without independence , 2008 .

[15]  Y. Bar-Shalom Tracking and data association , 1988 .

[16]  Branko Ristic,et al.  Monte Carlo realisation of a distributed multi-object fusion algorithm , 2010 .

[17]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[18]  Ronald P. S. Mahler,et al.  Optimal/robust distributed data fusion: a unified approach , 2000, SPIE Defense + Commercial Sensing.

[19]  A. Doucet,et al.  Sequential Monte Carlo methods for multitarget filtering with random finite sets , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[20]  Reza Olfati-Saber,et al.  Consensus and Cooperation in Networked Multi-Agent Systems , 2007, Proceedings of the IEEE.

[21]  Stephen P. Boyd,et al.  A scheme for robust distributed sensor fusion based on average consensus , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[22]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[23]  Murat Üney,et al.  Information measures in distributed multitarget tracking , 2011, 14th International Conference on Information Fusion.

[24]  Ali H. Sayed,et al.  Diffusion Strategies for Distributed Kalman Filtering and Smoothing , 2010, IEEE Transactions on Automatic Control.

[25]  Jeffrey K. Uhlmann,et al.  A non-divergent estimation algorithm in the presence of unknown correlations , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[26]  Yakov Bar-Shalom,et al.  Multitarget-Multisensor Tracking: Principles and Techniques , 1995 .

[27]  J. Bather,et al.  Mixture Reduction Algorithms for Uncertain Tracking , 1988 .

[28]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[29]  L. Campbell Equivalence of Gauss's Principle and Minimum Discrimination Information Estimation of Probabilities , 1970 .

[30]  Giuseppe Carlo Calafiore,et al.  Distributed linear estimation over sensor networks , 2009, Int. J. Control.

[31]  Ba-Ngu Vo,et al.  Analytic Implementations of the Cardinalized Probability Hypothesis Density Filter , 2007, IEEE Transactions on Signal Processing.

[32]  Marcello Farina,et al.  Distributed Moving Horizon Estimation for Linear Constrained Systems , 2010, IEEE Transactions on Automatic Control.

[33]  Jeffrey K. Uhlmann,et al.  Using Exponential Mixture Models for Suboptimal Distributed Data Fusion , 2006, 2006 IEEE Nonlinear Statistical Signal Processing Workshop.

[34]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .

[35]  Ba-Ngu Vo,et al.  The Gaussian Mixture Probability Hypothesis Density Filter , 2006, IEEE Transactions on Signal Processing.

[36]  Simon J. Julier,et al.  An Empirical Study into the Use of Chernoff Information for Robust, Distributed Fusion of Gaussian Mixture Models , 2006, 2006 9th International Conference on Information Fusion.

[37]  David J. Salmond Mixture reduction algorithms for target tracking in clutter , 1990 .

[38]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[39]  Jason L. Williams Gaussian Mixture Reduction for Tracking Multiple Maneuvering Targets in Clutter , 2003 .

[40]  Reza Olfati-Saber,et al.  Distributed Kalman filtering for sensor networks , 2007, 2007 46th IEEE Conference on Decision and Control.