The c=2/3 minimal N=1 superconformal system and its realisation in the critical O(2) Gaussian model

The structure of the ĉ=2/3 minimal N=1 superconformal system is analysed in detail. The primary operators are constructed as operators in the critical O(2) Gaussian model at some specific fixed radius. The operator algebra is verified explicitly. Operator product coefficients and some superspace correlation functions are calculated exactly.

[1]  M. Baake,et al.  Operator content of the Ashkin-Teller quantum chain, superconformal and Zamolodchikov-Fateev invariance. I. Free boundary conditions , 1987 .

[2]  M. Baake,et al.  Operator content of the Ashkin-Teller quantum chain, superconformal and Zamolodchikov-Fateev invariance. II. Boundary conditions compatible with the torus , 1987 .

[3]  V. Rittenberg,et al.  The Ashkin-teller Quantum Chain and Conformal Invariance , 1987 .

[4]  Sung-Kil Yang,et al.  Superconformal invariance in the two-dimensional Ashkin-Teller model , 1987 .

[5]  Sung-Kil Yang Z4×Z4 symmetry and parafermion operators in the self-dual critical ashkin-teller model , 1987 .

[6]  Sung-Kil Yang Modular Invariant Partition Function of the Ashkin-teller Model on the Critical Line and $N=2$ Superconformal Invariance , 1987 .

[7]  D. Kastor Modular Invariance in Superconformal Models , 1987 .

[8]  Y. Matsuo,et al.  Superconformal field theory with modular invariance on a torus , 1986 .

[9]  G. Sotkov,et al.  N=1 superconformal operator product expansions and superfield fusion rules , 1986 .

[10]  G. Waterson Bosonic Construction of an $N=2$ Extended Superconformal Theory in Two-dimensions , 1986 .

[11]  J. Cardy Operator Content of Two-Dimensional Conformally Invariant Theories , 1986 .

[12]  V. G. Knizhnik,et al.  Superconformal symmetry in two dimensions , 1985 .

[13]  H. Eichenherr Minimal operator algebras in superconformal quantum field theory , 1985 .

[14]  S. Shenker,et al.  Superconformal invariance in two dimensions and the tricritical Ising model , 1985 .

[15]  V. Dotsenko,et al.  Conformal Algebra and Multipoint Correlation Functions in 2d Statistical Models - Nucl. Phys. B240, 312 (1984) , 1984 .

[16]  A. Polyakov,et al.  Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory - Nucl. Phys. B241, 333 (1984) , 1984 .

[17]  Bernard Nienhuis,et al.  Exact Critical Point and Critical Exponents of O ( n ) Models in Two Dimensions , 1982 .

[18]  J. Cardy,et al.  The O($n$) Heisenberg Model Close to $n = d = 2$ , 1980 .

[19]  D. Nelson,et al.  Universal Jump in the Superfluid Density of Two-Dimensional Superfluids , 1977 .

[20]  D. Fairlie,et al.  Off-shell states in dual resonance theory , 1975 .

[21]  R. Bowers,et al.  LATTICE MODEL FOR THE lambda TRANSITION IN A BOSE FLUID. , 1967 .