Design of Hermite Subdivision Schemes Aided by Spectral Radius Optimization
暂无分享,去创建一个
[1] Thomas P. Yu,et al. Approximation order/smoothness tradeoff in Hermite subdivision schemes , 2001, SPIE Optics + Photonics.
[2] A. Lewis,et al. Optimizing Matrix Stability , 1999 .
[3] S. Riemenschneider,et al. Convergence of Vector Subdivision Schemes in Sobolev Spaces , 2002 .
[4] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[5] Ingrid Daubechies,et al. How Smooth Is the Smoothest Function in a Given Refinable Space , 1996 .
[6] A. Lewis,et al. Two numerical methods for optimizing matrix stability , 2002 .
[7] Bin Han,et al. Computing the Smoothness Exponent of a Symmetric Multivariate Refinable Function , 2002, SIAM J. Matrix Anal. Appl..
[8] Bin Han,et al. Multivariate Refinable Hermite Interpolants , 2003 .
[9] R. Jia,et al. Multivariate refinement equations and convergence of subdivision schemes , 1998 .
[10] Bin Han,et al. Vector cascade algorithms and refinable function vectors in Sobolev spaces , 2003, J. Approx. Theory.
[11] J. Tsitsiklis,et al. NP-hardness of some linear control design problems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.
[12] Qingtang Jiang,et al. Spectral Analysis of the Transition Operator and Its Applications to Smoothness Analysis of Wavelets , 2002, SIAM J. Matrix Anal. Appl..
[13] Amos Ron. Smooth refinable functions provide good approximation orders , 1997 .
[14] Michael L. Overton,et al. Digital Object Identifier (DOI) 10.1007/s101070100225 , 2022 .
[15] Bin Han,et al. Symmetry Property and Construction of Wavelets With a General Dilation Matrix , 2001 .
[16] Adrian S. Lewis,et al. Optimal Stability and Eigenvalue Multiplicity , 2001, Found. Comput. Math..
[17] I. Daubechies. Orthonormal bases of compactly supported wavelets II: variations on a theme , 1993 .
[18] Arkadi Nemirovski,et al. Several NP-hard problems arising in robust stability analysis , 1993, Math. Control. Signals Syst..
[19] Bin Han,et al. Analysis and Construction of Optimal Multivariate Biorthogonal Wavelets with Compact Support , 1999, SIAM J. Math. Anal..
[20] Bin Han,et al. Multivariate refinable Hermite interpolant , 2003, Math. Comput..