glial cells missing and gcm2 Cell Autonomously Regulate Both Glial and Neuronal Development in the Visual System of Drosophila

[1]  B. Jones Transcriptional control of glial cell development in Drosophila. , 2005, Developmental biology.

[2]  S. Pfaff,et al.  Olig2 and Ngn2 function in opposition to modulate gene expression in motor neuron progenitor cells. , 2005, Genes & development.

[3]  A. Graham,et al.  The origin of the parathyroid gland. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Iris Salecker,et al.  Neurons and glia: team players in axon guidance , 2004, Trends in Neurosciences.

[5]  A. Giangrande,et al.  Terminal tendon cell differentiation requires the glide/gcm complex , 2004, Development.

[6]  M. Wegner,et al.  Impacts of a new transcription factor family , 2004, The Journal of cell biology.

[7]  G. Mardon,et al.  Structure-function analysis of the Drosophila retinal determination protein Dachshund. , 2004, Developmental biology.

[8]  P. Ingham,et al.  iguana encodes a novel zinc-finger protein with coiled-coil domains essential for Hedgehog signal transduction in the zebrafish embryo. , 2004, Genes & development.

[9]  H. Takeda,et al.  The zebrafish iguana locus encodes Dzip1, a novel zinc-finger protein required for proper regulation of Hedgehog signaling , 2004, Development.

[10]  S. Kunes,et al.  An axon scaffold induced by retinal axons directs glia to destinations in the Drosophila optic lobe , 2004, Development.

[11]  D. Rowitch Glial specification in the vertebrate neural tube , 2004, Nature Reviews Neuroscience.

[12]  B. Jones,et al.  Transcriptional control of glial and blood cell development in Drosophila: cis-regulatory elements of glial cells missing. , 2004, Developmental biology.

[13]  T. Hosoya,et al.  The potential to induce glial differentiation is conserved between Drosophila and mammalian glial cells missing genes , 2003, Development.

[14]  C. Alexandre,et al.  Segment boundary formation in Drosophila embryos , 2003, Development.

[15]  H. Okano,et al.  Drosophila homeodomain protein REPO controls glial differentiation by cooperating with ETS and BTB transcription factors , 2003, Development.

[16]  Martine Moulin,et al.  Structure of the GCM domain–DNA complex: a DNA‐binding domain with a novel fold and mode of target site recognition , 2003, The EMBO journal.

[17]  B. Shilo,et al.  Signaling by the Drosophila epidermal growth factor receptor pathway during development. , 2003, Experimental cell research.

[18]  A. Giangrande,et al.  Transcriptional regulation of glial cell specification. , 2003, Developmental biology.

[19]  F. Hirth,et al.  A Pulse of the Drosophila Hox Protein Abdominal-A Schedules the End of Neural Proliferation via Neuroblast Apoptosis , 2003, Neuron.

[20]  M. Gho,et al.  The glial cell undergoes apoptosis in the microchaete lineage of Drosophila , 2003, Development.

[21]  S. Zipursky,et al.  Making Connections in the Fly Visual System , 2002, Neuron.

[22]  B. Jones,et al.  gcm2 promotes glial cell differentiation and is required with glial cells missing for macrophage development in Drosophila. , 2002, Developmental biology.

[23]  T. Naidich,et al.  Ectopic expression of Gcm1 induces congenital spinal cord abnormalities. , 2002, Development.

[24]  Wei Du,et al.  Hedgehog regulates cell growth and proliferation by inducing Cyclin D and Cyclin E , 2002, Nature.

[25]  S. Zipursky,et al.  Drosophila JAB1/CSN5 Acts in Photoreceptor Cells to Induce Glial Cells , 2002, Neuron.

[26]  P. Ingham,et al.  Hedgehog signaling in animal development: paradigms and principles. , 2001, Genes & development.

[27]  B. Jones Glial cell development in the Drosophila embryo , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[28]  M. Nakafuku,et al.  Combinatorial Roles of Olig2 and Neurogenin2 in the Coordinated Induction of Pan-Neuronal and Subtype-Specific Properties of Motoneurons , 2001, Neuron.

[29]  T. Jessell,et al.  Coordinate Regulation of Motor Neuron Subtype Identity and Pan-Neuronal Properties by the bHLH Repressor Olig2 , 2001, Neuron.

[30]  David J. Anderson,et al.  The bHLH Transcription Factor Olig2 Promotes Oligodendrocyte Differentiation in Collaboration with Nkx2.2 , 2001, Neuron.

[31]  A. Giangrande,et al.  Glide2, a second glial promoting factor in Drosophila melanogaster , 2001, The EMBO journal.

[32]  T. Hummel,et al.  Glial cell development in Drosophila , 2001, International Journal of Developmental Neuroscience.

[33]  M. Wegner,et al.  Chronicles of a switch hunt: gcm genes in development. , 2001, Trends in genetics : TIG.

[34]  S. Zipursky,et al.  Glial Cells Mediate Target Layer Selection of Retinal Axons in the Developing Visual System of Drosophila , 2001, Neuron.

[35]  A. Giangrande,et al.  Some fly sensory organs are gliogenic and require glide/gcm in a precursor that divides symmetrically and produces glial cells. , 2000, Development.

[36]  David J. Anderson,et al.  Genetic ablation of parathyroid glands reveals another source of parathyroid hormone , 2000, Nature.

[37]  S. Fisher,et al.  The glial cells missing-1 protein is essential for branching morphogenesis in the chorioallantoic placenta , 2000, Nature Genetics.

[38]  V. Hartenstein,et al.  Specification of Drosophila hematopoietic lineage by conserved transcription factors. , 2000, Science.

[39]  C. Klämbt,et al.  gcm and pointed synergistically control glial transcription of the Drosophila gene loco , 2000, Mechanisms of Development.

[40]  B. Dickson,et al.  Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. , 2000, Development.

[41]  K. Wallace,et al.  The pan‐neural bHLH proteins DEADPAN and ASENSE regulate mitotic activity and cdk inhibitor dacapo expression in the Drosophila larval optic lobes , 2000, Genesis.

[42]  T. Hosoya,et al.  Asymmetric cell division of thoracic neuroblast 6-4 to bifurcate glial and neuronal lineage in Drosophila. , 1999, Development.

[43]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[44]  K. J. Sepp,et al.  Conversion of lacZ enhancer trap lines to GAL4 lines using targeted transposition in Drosophila melanogaster. , 1999, Genetics.

[45]  S. Bray,et al.  Frizzled regulation of Notch signalling polarizes cell fate in the  Drosophila eye , 1999, Nature.

[46]  T. Hosoya,et al.  Alteration of cell fate by ectopic expression of Drosophila glial cells missing in non-neural cells , 1998, Development Genes and Evolution.

[47]  B. Shilo,et al.  A Retinal Axon Fascicle Uses Spitz, an EGF Receptor Ligand, to Construct a Synaptic Cartridge in the Brain of Drosophila , 1998, Cell.

[48]  C. Goodman,et al.  Isolation and characterization of mammalian homologs of the Drosophila gene glial cells missing. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[49]  S. Kunes,et al.  Signals transmitted along retinal axons in Drosophila: Hedgehog signal reception and the cell circuitry of lamina cartridge assembly. , 1998, Development.

[50]  W. Gehring,et al.  Spatial and temporal targeting of gene expression in Drosophila by means of a tetracycline-dependent transactivator system. , 1998, Development.

[51]  L. Lillien,et al.  Changes in Epidermal Growth Factor Receptor Expression and Competence to Generate Glia Regulate Timing and Choice of Differentiation in the Retina , 1998, Molecular and Cellular Neuroscience.

[52]  C. Doe,et al.  Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions , 1997, Nature.

[53]  A. Giangrande,et al.  glide/gcm is expressed and required in the scavenger cell lineage. , 1997, Developmental biology.

[54]  T. Hummel,et al.  Glial development in the Drosophila CNS requires concomitant activation of glial and repression of neuronal differentiation genes. , 1997, Development.

[55]  J. Schreiber,et al.  The regulator of early gliogenesis glial cells missing is a transcription factor with a novel type of DNA-binding domain. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[56]  D. Yamamoto,et al.  The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. , 1997, Development.

[57]  T. Hosoya,et al.  The gcm-motif: a novel DNA-binding motif conserved in Drosophila and mammals. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[58]  H. Steller,et al.  Molecular and genetic analyses of lama, an evolutionarily conserved gene expressed in the precursors of the Drosophila first optic ganglion , 1996, Mechanisms of Development.

[59]  S. Kunes,et al.  Hedgehog, Transmitted along Retinal Axons, Triggers Neurogenesis in the Developing Visual Centers of the Drosophila Brain , 1996, Cell.

[60]  H. Steller,et al.  Migration of glial cells into retinal axon target field in Drosophila melanogaster. , 1996, Journal of neurobiology.

[61]  Richard D Fetter,et al.  glial cells missing: a genetic switch that controls glial versus neuronal fate , 1995, Cell.

[62]  T. Hosoya,et al.  Glial cells missing: A binary switch between neuronal and glial determination in drosophila , 1995, Cell.

[63]  L. Lillien Changes in retinal cell fate induced by overexpression of EGF receptor , 1995, Nature.

[64]  C. K. Motzny,et al.  The Drosophila cubitus interruptus protein and its role in the wingless and hedgehog signal transduction pathways , 1995, Mechanisms of Development.

[65]  T. Kornberg,et al.  Analysis of cubitus interruptus regulation in Drosophila embryos and imaginal disks. , 1995, Development.

[66]  C. Rickert,et al.  The homeobox gene repo is required for the differentiation and maintenance of glia function in the embryonic nervous system of Drosophila melanogaster. , 1995, Development.

[67]  G. Rubin,et al.  dachshund encodes a nuclear protein required for normal eye and leg development in Drosophila. , 1994, Development.

[68]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[69]  H. Steller,et al.  Generation and early differentiation of glial cells in the first optic ganglion of Drosophila melanogaster. , 1992, Development.

[70]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.

[71]  K. Yao,et al.  The elav gene product of Drosophila, required in neurons, has three RNP consensus motifs. , 1988, Science.

[72]  J. Vonesch,et al.  Glide directs glial fate commitment and cell fate switch between neurones and glia. , 1996, Development.