Deformation behaviors of hydrogen filled boron nitride and boron nitride - carbon nanotubes: Molecular dynamics simulations of proposed materials for hydrogen storage, gas sensing, and radiation shielding

[1]  Haoyuan Lu,et al.  Development of Polymer Composites in Radiation Shielding Applications: A Review , 2023, Journal of Inorganic and Organometallic Polymers and Materials.

[2]  John F. Trant,et al.  Hydrogen adsorption on magnesium-decorated (3, 3) and (5, 0) boron nitride nanotubes , 2023, International journal of hydrogen energy.

[3]  Z. Johari,et al.  Hydrogen gas sensing performance of a carbon-doped boron nitride nanoribbon at elevated temperatures , 2023, PloS one.

[4]  R. Ahuja,et al.  Furtherance of the material-based hydrogen storage based on theory and experiments , 2023, International Journal of Hydrogen Energy.

[5]  D. Smeulders,et al.  Enhanced hydrogen storage in gold-doped carbon nanotubes: A first-principles study , 2022, Chemical Engineering Journal.

[6]  Seung Jae Yang,et al.  Where to go for the Development of High-Performance H_2 Storage Materials at Ambient Conditions? , 2022, Electronic Materials Letters.

[7]  Marolop Simanullang,et al.  Nanomaterials for on-board solid-state hydrogen storage applications , 2022, International Journal of Hydrogen Energy.

[8]  M. Rhamdhani,et al.  Thermal conductivities of hydrogen encapsulated boron nitride and hybrid boron nitride – carbon nanotubes using molecular dynamics simulations , 2022, Materials Today Communications.

[9]  V. Swamy,et al.  Mechanical and thermal properties of carbon nanotubes and boron nitride nanotubes for fuel cells and hydrogen storage applications: A comparative review of molecular dynamics studies , 2022, International Journal of Hydrogen Energy.

[10]  Mesut Kırca,et al.  Tensile characteristics of boron nanotubes by using reactive molecular dynamics simulations , 2022, Computational Materials Science.

[11]  S. Saha,et al.  Carbon-based sorbents for hydrogen storage: A state of the art on challenges and their sustainability at operating conditions for renewable energy. , 2022, ChemSusChem.

[12]  R. Singhal,et al.  Progress on boron nitride nanostructure materials: properties, synthesis and applications in hydrogen storage and analytical chemistry , 2022, Journal of Nanostructure in Chemistry.

[13]  S. Bhunya,et al.  The curious saga of dehydrogenation/hydrogenation for chemical hydrogen storage: a mechanistic perspective. , 2022, Chemical Communications.

[14]  S. Pantelides,et al.  Structure of Amorphous Two-Dimensional Materials: Elemental Monolayer Amorphous Carbon versus Binary Monolayer Amorphous Boron Nitride. , 2021, Nano letters.

[15]  Y. Bando,et al.  Hydrogen Storage in Carbon and Oxygen Co‐Doped Porous Boron Nitrides , 2020, Advanced Functional Materials.

[16]  V. Swamy,et al.  Tensile properties of hydrogenated hybrid graphene–hexagonal boron nitride nanosheets: a reactive force field study , 2020 .

[17]  R. Ahuja,et al.  Capacity enhancement of polylithiated functionalized boron nitride nanotubes: an efficient hydrogen storage medium. , 2020, Physical chemistry chemical physics : PCCP.

[18]  Jung-Sik Kim,et al.  Boron nitride nanotubes (BNNTs) decorated Pd-ternary alloy (Pd63·2Ni34·3Co2.5) for H2 sensing , 2020 .

[19]  A. Lider,et al.  An Overview of the Recent Progress in Modifications of Carbon Nanotubes for Hydrogen Adsorption , 2020, Nanomaterials.

[20]  Michael R. Mananghaya A simulation of hydrogen adsorption/desorption in metal-functionalized BN nanotube , 2020, Materials Chemistry and Physics.

[21]  Cheol-Sang Kim,et al.  Dual growth mode of boron nitride nanotubes in high temperature pressure laser ablation , 2019, Scientific Reports.

[22]  Shantanu Bhattacharya,et al.  Hydrogen gas sensing methods, materials, and approach to achieve parts per billion level detection: A review , 2019, International Journal of Hydrogen Energy.

[23]  I. K. Petrushenko,et al.  Physical adsorption of hydrogen molecules on single-walled carbon nanotubes and carbon-boron-nitrogen heteronanotubes: A comparative DFT study , 2019, Vacuum.

[24]  E. Nadimi,et al.  Gas sensing properties of CNT-BNNT-CNT nanostructures: A first principles study , 2019, Applied Surface Science.

[25]  S. Kundalwal,et al.  Effect of atom vacancies on elastic and electronic properties of transversely isotropic boron nitride nanotubes: A comprehensive computational study , 2019, Computational Materials Science.

[26]  S. Meguid,et al.  A critical study of the parameters governing molecular dynamics simulations of nanostructured materials , 2018, Computational Materials Science.

[27]  Liang Gao,et al.  Torsional mechanics of single walled carbon nanotubes with hydrogen for energy storage and fuel cell applications , 2018, Science China Physics, Mechanics & Astronomy.

[28]  S. Bernard,et al.  Boron Nitride for Hydrogen Storage. , 2018, ChemPlusChem.

[29]  Michael R. Mananghaya Hydrogen saturation limit of Ti-doped BN nanotube with B-N defects: An insight from DFT calculations , 2018 .

[30]  Shuo Zhao,et al.  Merger of Energetic Affinity and Optimal Geometry Provides New Class of Boron Nitride Based Sorbents with Unprecedented Hydrogen Storage Capacity. , 2018, Small.

[31]  V. Vijayaraghavan,et al.  Tensile loading characteristics of hydrogen stored carbon nanotubes in PEM fuel cell operating conditions using molecular dynamics simulation , 2018 .

[32]  Ruirui Hao,et al.  Dimeric configurations of atomic hydrogen adsorbed on a monolayer hexagonal boron nitride , 2017 .

[33]  T. Rabczuk,et al.  Investigation into the effect of doping of boron and nitrogen atoms in the mechanical properties of single-layer polycrystalline graphene , 2017 .

[34]  K. Hatami,et al.  Mechanical properties of single-walled carbon nanotubes: a comprehensive molecular dynamics study , 2017, Materials Research Express.

[35]  Hua Li,et al.  The grand canonical Monte Carlo simulation of hydrogen adsorption in single-walled carbon nanotubes , 2017 .

[36]  Michael Hirscher,et al.  Irreproducibility in hydrogen storage material research , 2016 .

[37]  T. Rabczuk,et al.  Mechanical properties of borophene films: a reactive molecular dynamics investigation , 2016, Nanotechnology.

[38]  R. Kumar,et al.  Effects of Different Hydrogenation Regimes on Mechanical Properties of h-BN: A Reactive Force Field Study , 2016 .

[39]  S. Safa,et al.  The effect of concentration of H2 physisorption on the current–voltage characteristic of armchair BN nanotubes in CNT–BNNT–CNT set , 2016 .

[40]  Rajesh Kumar,et al.  Tersoff potential with improved accuracy for simulating graphene in molecular dynamics environment , 2016 .

[41]  Chengyuan Wang,et al.  Mechanical properties of hybrid boron nitride–carbon nanotubes , 2016 .

[42]  Sudhir B. Kylasa,et al.  The ReaxFF reactive force-field: development, applications and future directions , 2016 .

[43]  Rajesh Kumar,et al.  Optimised cut-off function for Tersoff-like potentials for a BN nanosheet: a molecular dynamics study , 2016, Nanotechnology.

[44]  P. Patra,et al.  Thermomechanical buckling of boron nitride nanotubes using molecular dynamics , 2016 .

[45]  Byung Chul Yeo,et al.  Development of the ReaxFFCBN reactive force field for the improved design of liquid CBN hydrogen storage materials. , 2016, Physical Chemistry, Chemical Physics - PCCP.

[46]  X. Tian,et al.  Torsional properties of hexagonal boron nitride nanotubes, carbon nanotubes and their hybrid structures: A molecular dynamics study , 2015 .

[47]  F. Memarian,et al.  Atomistic simulations on the influence of diameter, number of walls, interlayer distance and temperature on the mechanical properties of BNNTs , 2015 .

[48]  S. Meguid,et al.  Composition-dependent buckling behaviour of hybrid boron nitride-carbon nanotubes. , 2015, Physical chemistry chemical physics : PCCP.

[49]  Takeo Oku,et al.  Hydrogen Storage in Boron Nitride and Carbon Nanomaterials , 2014 .

[50]  R. Ansari,et al.  Torsional buckling behavior of boron-nitride nanotubes using molecular dynamics simulations , 2014 .

[51]  N. Krishnan,et al.  Defect induced plasticity and failure mechanism of boron nitride nanotubes under tension , 2014 .

[52]  A. Zettl,et al.  Scaled synthesis of boron nitride nanotubes, nanoribbons, and nanococoons using direct feedstock injection into an extended-pressure, inductively-coupled thermal plasma. , 2014, Nano letters.

[53]  K. Tai,et al.  An integrated computational approach for determining the elastic properties of boron nitride nanotubes , 2014, International Journal of Mechanics and Materials in Design.

[54]  S. Khalili,et al.  Effect of Chiral Angle on Tensile Behavior Modeling of Single-Walled Carbon Nanotubes , 2014 .

[55]  C. Wang,et al.  CONTINUUM SHELL MODEL FOR BUCKLING OF ARMCHAIR CARBON NANOTUBES UNDER COMPRESSION OR TORSION , 2014 .

[56]  N. Krishnan,et al.  Chirality dependent elastic properties of single-walled boron nitride nanotubes under uniaxial and torsional loading , 2014 .

[57]  Bin-Hao Chen Mechanical response of hydrogen-filled single-walled carbon nanotubes under torsion , 2014 .

[58]  A. Khoei,et al.  Effect of defects on the local shell buckling and post-buckling behavior of single and multi-walled carbon nanotubes , 2013 .

[59]  S. Ebrahimi-Nejad,et al.  Compressive buckling of open-ended boron nitride nanotubes in hydrogen storage applications , 2013 .

[60]  Shijun Zhao,et al.  Mechanical properties of hybrid graphene and hexagonal boron nitride sheets as revealed by molecular dynamic simulations , 2013 .

[61]  F. Meng,et al.  Porous boron nitride with a high surface area: hydrogen storage and water treatment , 2013, Nanotechnology.

[62]  S. Ebrahimi-Nejad,et al.  Effects of structural defects on the compressive buckling of boron nitride nanotubes , 2013 .

[63]  A. Kinaci,et al.  Thermal conductivity of BN-C nanostructures , 2012, 1208.3607.

[64]  S. Ebrahimi-Nejad,et al.  The effect of temperature on the compressive buckling of boron nitride nanotubes , 2012 .

[65]  R. Oriňaková,et al.  Recent applications of carbon nanotubes in hydrogen production and storage , 2011 .

[66]  S. Ju,et al.  Deformation behaviors of an armchair boron-nitride nanotube under axial tensile strains , 2011 .

[67]  S. Ju,et al.  Tensile and Compressive Behaviours of a Boron Nitride Nanotube: Temperature Effects , 2011 .

[68]  G. Froudakis Hydrogen storage in nanotubes & nanostructures , 2011 .

[69]  S. Ju,et al.  Tuning the electronic properties of boron nitride nanotube by mechanical uni-axial deformation: a DFT study , 2011, Nanoscale research letters.

[70]  C. Wang,et al.  A molecular dynamics investigation of the torsional responses of defective single-walled carbon nanotubes , 2010 .

[71]  Guoxiu Wang,et al.  Molecular dynamic investigation of length dependency of single-walled carbon nanotube , 2010 .

[72]  E. Oh Elastic properties of boron-nitride nanotubes through the continuum lattice approach , 2010 .

[73]  Adarsh Kaniyoor,et al.  Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. , 2009, Nanoscale.

[74]  Michael Griebel,et al.  A molecular dynamics study on the impact of defects and functionalization on the Young modulus of boron–nitride nanotubes , 2009 .

[75]  K. Dharamvir,et al.  Elastic moduli of a boron nitride nanotube , 2007 .

[76]  Dmitri Golberg,et al.  Boron Nitride Nanotubes , 2007 .

[77]  K. Hwang,et al.  Mechanics of Carbon Nanotubes: A Continuum Theory Based on Interatomic Potentials , 2007 .

[78]  G. Froudakis,et al.  Why boron nitride nanotubes are preferable to carbon nanotubes for hydrogen storage , 2007 .

[79]  G. Seifert,et al.  Defective structure of BN nanotubes: from single vacancies to dislocation lines. , 2006, Nano letters.

[80]  W. L. Wang,et al.  Direct synthesis of B-C-N single-walled nanotubes by bias-assisted hot filament chemical vapor deposition. , 2006, Journal of the American Chemical Society.

[81]  A. V. van Duin,et al.  Theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. II. Collision, storage, and adsorption. , 2005, The Journal of chemical physics.

[82]  Bao Wen-Xing,et al.  Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics , 2004 .

[83]  S. Jhi,et al.  Hydrogen adsorption on boron nitride nanotubes: A path to room-temperature hydrogen storage , 2004 .

[84]  H. Hwang,et al.  Molecular-dynamics simulation of structure and thermal behaviour of boron nitride nanotubes , 2004 .

[85]  Jinlong Yang,et al.  Deformation-induced site selectivity for hydrogen adsorption on boron nitride nanotubes , 2004 .

[86]  Ying Chen,et al.  Boron nitride nanotubes: Pronounced resistance to oxidation , 2004 .

[87]  Dmitri Golberg,et al.  Catalyzed collapse and enhanced hydrogen storage of BN nanotubes. , 2002, Journal of the American Chemical Society.

[88]  Hongwei Zhu,et al.  Hydrogen uptake in boron nitride nanotubes at room temperature. , 2002, Journal of the American Chemical Society.

[89]  G. Froudakis Hydrogen interaction with carbon nanotubes: a review of ab initio studies , 2002 .

[90]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[91]  Cheng,et al.  Hydrogen storage in single-walled carbon nanotubes at room temperature , 1999, Science.

[92]  P. Bernier,et al.  Elastic properties of single-wall nanotubes , 1998, cond-mat/9811257.

[93]  Alex Zettl,et al.  Measurement of the Elastic Modulus of a Multi-Wall Boron Nitride Nanotube , 1998 .

[94]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[95]  Luc T. Wille,et al.  Elastic properties of single-walled carbon nanotubes in compression , 1997 .

[96]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[97]  A. Darwish,et al.  Mechanical properties of defective double-walled boron nitride nanotubes for radiation shielding applications: A computational study , 2019, Computational Materials Science.

[98]  Jun Yu,et al.  A comparison between the mechanical and thermal properties of single-walled carbon nanotubes and boron nitride nanotubes , 2017 .