On the ordering of characteristic input-output modes in MIMO discrete-time systems

Due to theoretical results for convolution feedback systems in formed spaces of classes of signals, the time-domain input-output approach to MIMO control problem using matrices of weighting functions as basic system models has given rise to the computer-aided methodology of characteristic patterns and vectors, and its modification in terms of k-time sequence-matrices implement the idea of finding natural multivariable input-output modes. This paper presents a consistent solution to the ordering of characteristic patterns and of vectors, solely in the time domain of k-time sequences, which enables a unique input-output CPA-CPV decomposition. It is based on the analysis of weighted power distribution on path-subsystems in order to determine the dominant ones, which should appear in the main diagonal.

[1]  Charles A. Desoer,et al.  Input—output properties of multiple-input, multiple-output discrete systems: part I☆ , 1970 .

[2]  N. E. Gough,et al.  Computer-aided identification and multivariable control system design using convolution algebra , 1977 .

[4]  D. J. Mamucevski,et al.  An Approach to the Simulation of Large-scale Interconnected MIMO Control Systems , 1987 .

[5]  D. H. Owens First and second-order-like structures in linear multivariable-control-systems design , 1975 .

[6]  S. Kung,et al.  Optimal Hankel-norm model reductions: Multivariable systems , 1980 .

[7]  M. Mirza,et al.  An algorithm for characteristic input-output modes of discrete convolution systems , 1987 .

[8]  Β. L. HO,et al.  Editorial: Effective construction of linear state-variable models from input/output functions , 1966 .

[9]  Charles A. Desoer,et al.  Discrete time convolution control systems , 1982 .

[10]  Mathukumalli Vidyasagar,et al.  General necessary conditions for input-output stability , 1971 .

[11]  F. M. Callier,et al.  Convolution feedback systems. , 1972 .

[12]  J. J. Belletrutti,et al.  The characteristic locus design method , 1973 .

[13]  B. W. Smith Parameter Estimation in the Presence of Measurement Noise , 1966 .

[14]  H. Rosenbrock,et al.  State-space and multivariable theory, , 1970 .

[15]  H. H. Rosenbrock,et al.  State-space analysis of cascaded controller , 1970 .

[16]  C. Desoer,et al.  Tracking and Disturbance Rejection of MIMO Nonlinear Systems with PI Controller , 1985, 1985 American Control Conference.

[17]  Charles A. Desoer,et al.  Open-loop unstable convolution feedback systems with dynamical feedbacks , 1976, Autom..

[18]  Norman E. Gough,et al.  Computer-aided study of nonlinear systems using an input-output approach , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[19]  Rolls-Royce,et al.  The Jet engine , 1986 .

[20]  Norman E. Gough,et al.  Computation of characteristic weighting patterns and vectors of discrete multivariable systems , 1987 .

[21]  R.S.A. Al-Thiga,et al.  An interactive language for computer-aided identification and control system design , 1977 .

[22]  D. H. Owens Dyadic expansions and their applications , 1979 .

[23]  James B. Farison,et al.  Convolution and module theory of linear systems , 1972 .