IGS14/igs14.atx: a new framework for the IGS products

The International GNSS Service (IGS) is about to switch to a new reference frame (IGS14), based on the latest release of the International Terrestrial Reference Frame (ITRF2014), as the basis for its products. An updated set of satellite and ground antenna calibrations (igs14.atx) will become effective at the same time. IGS14 and igs14.atx will then replace the previous IGS08/igs08.atx framework in use since GPS week 1632 (17 April 2011) and in the second IGS reprocessing campaign (repro2). Despite the negligible scale difference between ITRF2008 and ITRF2014 (0.02 ppb), the radial components of all GPS and GLONASS satellite antenna phase center offsets (z-PCOs) had to be updated in igs14.atx, because of modeling changes recently introduced within the IGS that affect the scale of the IGS products. This was achieved by deriving and averaging time series of satellite z-PCO estimates, consistent with the ITRF2014 scale, from the daily repro2 and latest operational SINEX solutions of seven IGS Analysis Centers (ACs). Compared to igs08.atx, igs14.atx includes robot calibrations for 16 additional ground antenna types, so that the percentage of stations with absolute calibrations in the IGS network will reach ~90% after the switch. 19 type-mean robot calibrations were also updated thanks to the availability of calibration results for additional antenna samples. IGS14 is basically an extract of well-suited reference frame stations (i.e., with long and stable position time series) from ITRF2014. However, to make the IGS14 station coordinates consistent with the new igs14.atx ground antenna calibrations, position offsets due to the switch from igs08.atx to igs14.atx were derived for all IGS14 stations affected by ground antenna calibration updates and applied to their ITRF2014 coordinates. This presentation will first detail the different steps of the elaboration of IGS14 and igs14.atx. The impact of the switch on GNSS-derived geodetic parameter time series will then be assessed by re-aligning the daily repro2 and latest operational IGS combined SINEX solutions to IGS14/igs14.atx. A particular focus will finally be given to the biases and trends present in the satellite z-PCO time series derived from the daily AC SINEX solutions, and to their interpretation in terms of scale and scale rate of the terrestrial frame.