Generalized perturbed complex Toda chain for Manakov system and exact solutions of Bose-Einstein mixtures

We analyze, both analytically and numerically, the dynamical behavior of the N-soliton train in the Manakov system with perturbations due to an external potential. The perturbed complex Toda chain model has been employed to describe adiabatic interactions within the N Manakov-soliton train. Simulations performed demonstrate that external potentials can play a stabilizing role to provide bound state regime of the train propagation. We also present new stationary and travelling wave solutions to equations describing Bose-Fermi mixtures in an elliptic external potential. Precise conditions for the existence of every class of solutions are derived. There are indications that such waves and localized objects may be observed in experiments with cold quantum degenerate gases.

[1]  Yuri S. Kivshar,et al.  Optical Solitons: From Fibers to Photonic Crystals , 2003 .

[2]  E. V. Doktorov,et al.  N-soliton train and generalized complex Toda chain for the Manakov system , 2007 .

[3]  V. Gerdjikov,et al.  Adiabatic interaction of N ultrashort solitons: universality of the complex Toda chain model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  N. Edagawa,et al.  Feasibility demonstration of 20 Gbit/s single channel soliton transmission over 11500 km using alternating-amplitude solitons , 1994 .

[5]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[6]  Mario Salerno Matter-wave quantum dots and antidots in ultracold atomic Bose-Fermi mixtures , 2005 .

[7]  S. V. Manakov On the theory of two-dimensional stationary self-focusing of electromagnetic waves , 1973 .

[8]  N. A. Kostov,et al.  Quasiperiodic and periodic solutions for vector nonlinear Schrödinger equations , 2000 .

[9]  J. R. Taylor,et al.  Optical Solitons: Theory and Experiment , 2005 .

[10]  V. Gerdjikov,et al.  Two-component Bose-Einstein condensates in periodic potential. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Bernard Deconinck,et al.  Dynamics of periodic multi-component Bose-Einstein condensates , 2003 .

[12]  Jianke Yang,et al.  Suppression of Manakov soliton interference in optical fibers. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Arnold Jm,et al.  Stability of solitary wave trains in Hamiltonian wave systems. , 1999 .

[14]  Valery S Shchesnovich Interaction of N solitons in the massive Thirring model and optical gap system: the complex Toda chain model. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  L D Carr,et al.  Stability of stationary states in the cubic nonlinear Schrödinger equation: applications to the Bose-Einstein condensate. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  N. A. Kostov,et al.  Quasi–periodic and periodic solutions for coupled nonlinear Schrödinger equations of Manakov type , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  V. Gerdjikov,et al.  Modeling Adiabatic N-Soliton Interactions and Perturbations , 2004, cond-mat/0409741.

[18]  S. Novikov,et al.  Theory of Solitons: The Inverse Scattering Method , 1984 .

[19]  J. Nathan Kutz,et al.  Bose-Einstein Condensates in Standing Waves , 2001 .

[20]  E. G. Evstatiev,et al.  NONLINEAR SCHRODINGER EQUATION AND N-SOLITON INTERACTIONS : GENERALIZED KARPMAN-SOLOV'EV APPROACH AND THE COMPLEX TODA CHAIN , 1997 .

[21]  V. Rothos,et al.  Dynamics of the Ablowitz-Ladik soliton train. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  J. M. Arnold,et al.  Complex Toda lattice and its application to the theory of interacting optical solitons , 1998 .

[23]  C. Desem,et al.  Optical Solitons: Soliton–soliton interactions , 1992 .

[24]  I M Uzunov,et al.  N-soliton interaction in trains of unequal soliton pulses in optical fibers. , 1992, Optics letters.

[25]  Ivan M. Uzunov,et al.  Adiabatic and non-adiabatic soliton interactions in nonlinear optics , 2001 .

[26]  Kaup,et al.  Asymptotic Behavior of N-Soliton Trains of the Nonlinear Schrödinger Equation. , 1996, Physical review letters.

[27]  V. Karpman,et al.  A perturbational approach to the two-soliton systems , 1981 .

[28]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[29]  J C Bronski,et al.  Bose-Einstein condensates in standing waves: the cubic nonlinear Schrödinger equation with a periodic potential. , 2001, Physical review letters.

[30]  D. J. Kaup,et al.  Perturbation theory for the Manakov soliton and its applications to pulse propagation in randomly birefringent fibers , 1997 .

[31]  Lev A. Ostrovsky,et al.  Interactions of solitons in nonintegrable systems: Direct perturbation method and applications , 1981 .

[32]  Alexey V. Porubov,et al.  Some general periodic solutions to coupled nonlinear Schrödinger equations , 1999 .

[33]  Ivan M. Uzunov,et al.  On the description of N-soliton interaction in optical fibers , 1996 .

[34]  Víctor M. Pérez-García,et al.  Modulational instability, solitons and periodic waves in a model of quantum degenerate boson–fermion mixtures , 2005 .

[35]  Valery S. Shchesnovich,et al.  PERTURBATION THEORY FOR SOLITONS OF THE MANAKOV SYSTEM , 1997 .