Sublethal effects of methylmercury on lateral line sensory and ion-regulatory functions in zebrafish embryos.

[1]  L. D. de Lacerda,et al.  Mercury in oceanic upper trophic level sharks and bony fishes - A systematic review. , 2022, Environmental pollution.

[2]  Y. Zhang,et al.  Lead Exposure Causes Spinal Curvature during Embryonic Development in Zebrafish , 2022, International journal of molecular sciences.

[3]  C. Lamborg,et al.  Bluefin tuna reveal global patterns of mercury pollution and bioavailability in the world's oceans , 2021, Proceedings of the National Academy of Sciences.

[4]  Lavinia Sheets,et al.  Using the Zebrafish Lateral Line to Understand the Roles of Mitochondria in Sensorineural Hearing Loss , 2021, Frontiers in Cell and Developmental Biology.

[5]  Y. Sung,et al.  A review of mercury pathological effects on organs specific of fishes , 2021, Environmental Pollutants and Bioavailability.

[6]  J. Horng,et al.  Vincristine exposure impairs skin keratinocytes, ionocytes, and lateral-line hair cells in developing zebrafish embryos. , 2020, Aquatic toxicology.

[7]  B. Irawan,et al.  Short-term mercury exposure in tilapia (Oreochromis niloticus) at different salinities: impact on serum osmoregulation, hematological parameters, and Na+/K+-ATPase level , 2020, Heliyon.

[8]  J. Horng,et al.  Ammonia exposure impairs lateral-line hair cells and mechanotransduction in zebrafish embryos. , 2020, Chemosphere.

[9]  J. Aaseth,et al.  Methylmercury and developmental neurotoxicity: A global concern , 2020 .

[10]  J. Horng,et al.  Acidified water impairs the lateral line system of zebrafish embryos. , 2019, Aquatic toxicology.

[11]  Tamara M. Stawicki,et al.  Mechanotransduction Activity Facilitates Hair Cell Toxicity Caused by the Heavy Metal Cadmium , 2019, bioRxiv.

[12]  J. Horng,et al.  Toxic effects of silver and copper nanoparticles on lateral-line hair cells of zebrafish embryos. , 2019, Aquatic toxicology.

[13]  J. Horng,et al.  Silver nanoparticle exposure impairs ion regulation in zebrafish embryos. , 2019, Aquatic toxicology.

[14]  S. Uchida,et al.  Clinical importance of potassium intake and molecular mechanism of potassium regulation , 2019, Clinical and Experimental Nephrology.

[15]  Sujing Wang,et al.  The Toxicological Effects of Mercury Exposure in Marine Fish , 2019, Bulletin of Environmental Contamination and Toxicology.

[16]  Sheng-Ping L. Hwang,et al.  Zebrafish Klf4 maintains the ionocyte progenitor population by regulating epidermal stem cell proliferation and lateral inhibition , 2019, PLoS genetics.

[17]  G. Montalbano,et al.  Neuromast hair cells retain the capacity of regeneration during heavy metal exposure. , 2018, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[18]  J. Horng,et al.  Potassium Regulation in Medaka (Oryzias latipes) Larvae Acclimated to Fresh Water: Passive Uptake and Active Secretion by the Skin Cells , 2017, Scientific Reports.

[19]  M. Esteban,et al.  Mercury and its toxic effects on fish , 2017 .

[20]  Daniel A. Cristol,et al.  Methylmercury Exposure Reduces the Auditory Brainstem Response of Zebra Finches (Taeniopygia guttata) , 2017, Journal of the Association for Research in Otolaryngology.

[21]  Zhi–Hao Liu,et al.  Reproductive toxicity of inorganic mercury exposure in adult zebrafish: Histological damage, oxidative stress, and alterations of sex hormone and gene expression in the hypothalamic-pituitary-gonadal axis. , 2016, Aquatic toxicology.

[22]  M. E. Brigham,et al.  Optimizing fish sampling for fish-mercury bioaccumulation factors. , 2015, Chemosphere.

[23]  A. Savari,et al.  Assessment of gill pathological responses in the tropical fish yellowfin seabream of Persian Gulf under mercury exposure , 2014, Toxicology reports.

[24]  Wei-Min Chuang,et al.  Extracellular Ca(2+) and Mg(2+) modulate aminoglycoside blockade of mechanotransducer channel-mediated Ca(2+) entry in zebrafish hair cells: an in vivo study with the SIET. , 2013, American journal of physiology. Cell physiology.

[25]  H. Haller,et al.  “Zebrafishing” for Novel Genes Relevant to the Glomerular Filtration Barrier , 2013, BioMed research international.

[26]  Y. Lai,et al.  Rhcg1 and Rhbg mediate ammonia excretion by ionocytes and keratinocytes in the skin of zebrafish larvae: H+-ATPase-linked active ammonia excretion by ionocytes. , 2013, American journal of physiology. Regulatory, integrative and comparative physiology.

[27]  P. Elliott,et al.  Effect of lower sodium intake on health: systematic review and meta-analyses , 2013, BMJ : British Medical Journal.

[28]  O. Malm,et al.  A systematic review of mercury ototoxicity. , 2012, Cadernos de saude publica.

[29]  P. Hwang,et al.  Rhcg1 and NHE3b are involved in ammonium‐dependent sodium uptake by zebrafish larvae acclimated to low‐sodium water , 2012, American journal of physiology. Regulatory, integrative and comparative physiology.

[30]  Shuo-zeng Dou,et al.  Antioxidative responses and bioaccumulation in Japanese flounder larvae and juveniles under chronic mercury exposure. , 2010, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[31]  P. Hwang,et al.  Role of SLC12A10.2, a Na-Cl cotransporter-like protein, in a Cl uptake mechanism in zebrafish (Danio rerio). , 2009, American journal of physiology. Regulatory, integrative and comparative physiology.

[32]  Horst Bleckmann,et al.  Lateral line system of fish. , 2009, Integrative zoology.

[33]  M. Allende,et al.  Acute copper exposure induces oxidative stress and cell death in lateral line hair cells of zebrafish larvae , 2008, Brain Research.

[34]  P. Hwang,et al.  Ammonia excretion by the skin of zebrafish (Danio rerio) larvae. , 2008, American journal of physiology. Cell physiology.

[35]  J. Lagardère,et al.  Impact of acute cadmium exposure on the trunk lateral line neuromasts and consequences on the "C-start" response behaviour of the sea bass (Dicentrarchus labrax L.; Teleostei, Moronidae). , 2006, Aquatic toxicology.

[36]  M. Allende,et al.  Sub-lethal concentrations of waterborne copper are toxic to lateral line neuromasts in zebrafish (Danio rerio) , 2006, Hearing Research.

[37]  J. Kunkel,et al.  Proton pump-rich cell secretes acid in skin of zebrafish larvae. , 2006, American journal of physiology. Cell physiology.

[38]  Bo-Kai Liao,et al.  Epithelial Ca(2+) channel expression and Ca(2+) uptake in developing zebrafish. , 2005, American journal of physiology. Regulatory, integrative and comparative physiology.

[39]  M. Aschner,et al.  Methylmercury: Recent Advances in the Understanding of Its Neurotoxicity , 2005, Therapeutic drug monitoring.

[40]  M. Ulfendahl,et al.  Mercury (Hg2+) suppression of potassium currents of outer hair cells. , 2003, Neurotoxicology and teratology.

[41]  E. Pelletier,et al.  Comparative uptake, bioaccumulation, and gill damages of inorganic mercury in tropical and nordic freshwater fish. , 2000, Environmental research.

[42]  P. Duijvendijk,et al.  Cardiovascular physiology , 1976, Medical History.

[43]  P. Hwang,et al.  Gill ion transport, acid-base regulation and nitrogen excretion , 2013 .

[44]  A. Ismail,et al.  Effect of mercury and cadmium on early life stages of Java medaka (Oryzias javanicus): a potential tropical test fish. , 2011, Marine pollution bulletin.

[45]  B. Nilius,et al.  Calcium absorption across epithelia. , 2005, Physiological reviews.

[46]  M. Harada,et al.  Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. , 1995, Critical reviews in toxicology.